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Quasihydrodynamics of nanofluid mixtures
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The functional perturbation theory method developed eallielA. Pozhar and K. E. Gubbins, J. Chem.
Phys.94, 1367(1991)] and used for derivation of the transport theory of pure dense, strongly inhomogeneous
fluids[L. A. Pozhar and K. E. Gubbins, J. Chem. Ph§4.8970(1993] is exploited to develop the transport
theory for mixtures of dense, strongly inhomogeneous fluids. The generalized Enskog-like kinetic equations
have been solved using the 13-moment approximation method to obtain linearized quasihydrodynamic equa-
tions of first order in gradients of continuum variables and to derive explicit, tractable expressions for the
transport coefficients of such mixtures. The derived transport coefficients are expressed in terms of equilibrium
structure factordthe number density and the pair and direct correlation functiofishe corresponding
inhomogeneous fluid mixtures. Diffusion in such mixtures is considered in detail for several particular cases.
[S1063-651%97)00610-1

PACS numbsgfs): 66.10.Cb, 02.10.Jf, 05.28y, 05.60:+w

I. INTRODUCTION rium phenomena in nanofluidd,2,4 and their mixtures.
Recent comparisons of theoretical predictions for the shear

The properties of strongly inhomogeneous fluids, such asgiscosity of nanofluids, obtained in the framework of this
those at interfaces and confined in narrow capillary pores ofpproach, with  nonequilibrium  molecular-dynamics
widths less than about 10 nfoalled here nanofluidsshow (NEMD) simulation datd3] show that such a generalization
a rich variety of behavior, including enhanced or inhibitedleads to further insights into the nature of nonequilibrium
viscosity and diffusion rates, new and modified phase transiprocesses in nanofluids. In particular, the thefgy] cor-
tions, and highly selective adsorption. Experimental studiesectly predicts the increase in the shear viscosity due to con-
designed to investigate properties of such fluids experiencBnement and the oscillating nature of the local shear viscos-
difficulties due to the complicated structure of the confinedity of nanofluids. The theoretical results have been shown to
systems and interfaces, the many variables involved, and thegree within 1-5% with the NEMD dati8] on the shear
sensitivity of the properties to experimental conditions. Inviscosity of a nanofluid confined in a narrow slit pore of
the few cases when reliable experimental data have beeibout five molecular diameters in width. This success of the
obtained, their analysis is complicated by a lack of a reliableheory has encouraged us to further develop the approach to
theoretical description of the properties of such systems. include mixtures of nanofluids.

Over the past decade there has been significant progress In this paper we present such a generalization of the
in understanding equilibrium properties of inhomogeneousabove theory and describe transport processes in mixtures of
fluids, though some wide areas are still to be investigateddense, strongly inhomogeneous fluids composed of simple,
Much less progress has been achieved in the case of nonegsiructureless molecules. To do this we follow the methods
librium properties of these fluids. Such knowledge is verydeveloped and used in our previous wofs4]. We start
important for both basic and applied research since manfrom the system of Enskog-like kinetic equations derived
industrial processes are known to be limited by diffusion,earlier [1] on the basis of functional perturbation theory
selectivity, and/or flow considerations. In several recent pa¢FPT), and use the 13-moment approximatigiGrad
pers[1-3] and a monograpf4] we have addressed the de- method, generalized by Sung and DaHlg}, to obtain the
velopment of rigorous statistical mechanical methods for theorresponding system of nonlocal moment equati(®esc.
description of nonequilibrium properties of nanofluids. Thesdl) for the quasicontinuum variables, defined as expectation
methods generalize existing rigorous approaches in nonequialues of the first 13 moments of the velocity distribution
librium statistical mechanics of uniform systerteee Ref. functions of the components of the nanofluid mixtures. These
[5] and references thergirand qualitative conceptig] in definitions reflect those of the densities of the components,
statistical mechanics of confined fluids. They also suggesheir hydrodynamic velocities, temperatures, kinetic contri-
new developments in nonequilibrium statistical mechanicsbutions to the pressure tensor, and the energy flux specific to
in particular that of nanofluids. The major thrust of our ap-uniform fluid mixtures. However, the physical meaning of
proach is to generalize rigorous statistical mechanical apeur quasicontinuum quantities may not coincide with that of
proaches developed for the description of nonequilibriumthe continuum characteristics of uniform fluid mixtures be-
processes in unifornfor bulk) fluids to include nonequilib- cause we are concerned with fluid systems of a fifsitene-

times very smajl number of molecules. Rather, our quasi-
continuum quantities are essentially expectation values of the
*Permanent address: Institute for Low Temperature Physics andorresponding velocity moments.
Engineering, National Academy of Sciences of the Ukraine, 47 Le- In Sec. lll the system of equations for the quasicontinuum
nin Avenue, Kharkov 310164, Ukraine. variables is reduced to obtain the linearized, Navier-Stokes-
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like, quasihydrodynamic equations of first order in gradientdess, and all of the same species. These expressions are easily
of the quasicontinuum variables. These quasihydrodynamigeneralized to cases where the walls are composed of a mix-
equations are derived in terms of deviations of the quasicorture of species by adding a summation over wall species to
tinuum variables from their equilibrium values. Though suchterms involving the fluid-wall pair correlation functiay,, -
nonequilibrium values are characterized by large spatial gralhe repulsive contributions to all of the potentials of inter-
dients, recent NEMD simulation data and experimental findmolecular interaction are assumed to be hard-core ones, with
ings show that their deviations from the corresponding equiéffective diameters-;; specific to interactions of thith spe-
librium values are small, provided that the system is not todi€S molecules with those of thjéh species, and with effec-

far from its equilibrium state(see references in Ref4],  tive diameterss;, corresponding to the repulsive interac-
Chap. 2. In deriving these equations, we also recover exions of theith species molecules with those of the walls.
plicit expressions for the viscosities and thermal conductivi-The attractive parts of the potentials are expected to behave
ties of the nanofluid mixtures. The derivation of explicit ex-as ", N>2, atr—e, wherer is the distance between
pressions for the diffusion coefficients for such mixturesinteracting molecules. Also, the potentials of intermolecular
includes usage of an appropriate expression for the equiliphteraction are expected to be central and pairwise. The
rium pressure of nanofluid mixtures and is discussed in Seavalls, which are of arbitrary geometry, are supposed to be
IV. As for a pure nanofluid2,4], the transport coefficients of impenetrable to fluid molecules and thermostated at tempera-
a nanofluid mixture emerge in terms of the “smoothed” tureT; the wall molecules are fixed in their positions in the
structure factors of the corresponding nanofluid mixture atvalls. Since the wall molecules are fixed, there will be a net
equilibrium. The smoothing procedures enter these expregnomentum production in the system, but no kinetic-energy
sions automatically as a consequence of having intermoleciroduction. Such a momentum production should not affect
lar interaction potentials that are the sum of short-range relocal values of the kinetic coefficients of the nanofluid mix-
pulsive and long-range attractive contributions. We placdure, except those in the immediate vicinity of the walls. In
some emphasis on the diffusion coefficients here, in view ofddition, we assume that there is no chemical reaction in the
their prime importance for applications involving nanofluids System.

in pores. Section V contains closing remarks, and the Appen- Neglecting delayed response of the system to thermal dis-

dixes supply details of the theory. turbances, and being close to the equilibrium state of the
system, the kinetic stage of evolution of the above nanofluid
IIl. FPT KINETIC EQUATIONS, THE 13-MOMENT mixture is described by the kinetic equatio@s36) of Ref.
APPROXIMATION METHOD, AND NONLOCAL MOMENT [1] [see also the kinetic equatiotB2) of Chap. 3, Ref[4]]
EQUATIONS FOR MIXTURES OF NANOFLUIDS with respect to thesF;(q,v;t), which denote the deviations
of the velocity distribution functiongwhere the indexi
A. FPT kinetic equations specifies a component of the mixthifeom their equilibrium

Inhomogeneity of a fluid or a fluid mixture composed of Values®;(v) = (Bmi/2m)*%exp(— fm|v|/2), i.e., the corre-
simple, structureless molecules can be considered to resiiPonding Maxwell-Boltzmann velocity distribution  func-
from a continuous external potential field, and in a generdions. Herem is the mass of a molecule of thth species;
case this may be written as a sum of short-range repulsivée vectorsy andv denote the Cartesian three-vector of spa-
and long-range attractive contributions. The short-range refial coordinates and the velocity of a molecule, respectively;
pulsive part describes hard-core-like interactions of the fluidv| means the absolute value of the vector B=1kgT,
molecules with molecules forming walig any). The long- whereT is the equilibrium temperature of the nanofluid mix-
range attractive contribution are caused by both the longture andkg is the Boltzmann constant. These kinetic equa-
range intermolecular interactions of the fluid molecules withtions can be transformed to the form
the molecules of the walls and an external potential field of a
gener_al nature. A similar representation of the fluid-fluid in- — SFi(q,V;t)+V- i SF.(q,v;t)
teractions can be made by means of the Weeks-Chandler- 9t 4
Andersen 7] or Barker-Henderso[8] methods. In what fol- N
lows we consider an inhpmogeneous fI_uid mixtur_e composed :z f f dg’dv' T (quv:q’ V') SF (g’ V1),
of N components, in which molecules interact with the wall =1
molecules and with each other by virtue of the above poten-
tials. To simplify the expressions, the molecules forming the
confinement(walls) are considered to be simple, structure-where

(2.1

N
Fil(q,V;Q',V’)=5i|JZl O'izjf f f do dvidv;®;(v))|vji- 61 6(vj - 0){ 6(v—Vi)n;(q— 0y;0)g;j (9,9 — 0 &)
—5(V—Vi)nj(q+Uij&)gij(qu"'Uij5‘)}5(V'—Vi)5(CI'—Q)"'(fﬁf fjd&dVidVI|VIi'&|0(Vli"})q)i(vi)

X{(v=vi)INi(q' =0y 0) i (q' — 03 0,9") 8(q—q" + 0 6) — S(V=Vv))ni(q' + o3 0) gyt (0’ + 0y 0,q")
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Vi | 0(— Vi 0){S(V—V )Ny (q— 0y )

X5(q_q,_0'ila')}5(V,_V|)+5i|0'§,\,ffd&dvi

S(V=V)Ny(q+ 01y 0) Gi (0,0 + 0y ) } S(V' — ;) 5(q' — q)
ﬁf”(lq—q’l)]
d(q—q’)

><giw(q:q_a'iw‘})_
dCii(9,q")

a0 —gi(0,9")

+ni(Q)q)i(V)V'(

ani(q)
Jq

+

-vO,(Vv) (2.2

N
1+ci.(q,q'>—k§l qu"m(q")ck'(q",q’)].

In the above expression#dt andd/dq denote the time de-  B. Velocity distribution functions in terms of their moments

rivative and spacial gradient, the centered dot means the in- Tpe velocity distribution functions of E¢2.1) may be

ner product,q’,q” andv’,v",v;,v, are dummy variables of \yritten in terms of their velocity moments, in which case Eq.
integration over the domains of the molecular coordinate$2 1) gives rise to an infinite system of nonlocal moment
and velocitiesn;(q) is the equilibrium number density of the equations. For this purpose we make use of the generalized
ith speciesg;x(d,q+ ox0) andg;,(d,9=* oy, 0) denote the Hermite polynomial§10], defined by the expressions

contact values of the equilibrium pair-correlation functions A .

specific to théth andkth component interactions, and tth WV == &5

component and wall molecules interactions, respectively; 9\ 9 \l2 9 \ls
Cik(a,q’) is the equilibrium direct correlation function spe- x| — —) (— —) (— —) Di(¢)
cific to theith andkth species;s; stands for Kronecker's 961 962 9¢3

delta; o and o, are the effective diameters of the hard-
core interactions specific tdh andkth species, and thieh
species and the wall molecules, respectively; andk are
the unit vectors of the, y, andz directions, respectively;
o= (TXI+0'yj+(TZ |o|?=1 is the unit vector;5(q—q’),
é(v—V'), etc., are Dirac delta functionsy; =v;—(vj;
-0;1)Q; represents postcollisional velocity of théh mol-
ecule, withv; =v;—v;, dji being the unit vector in the di-
rection from the center of mass of thigh molecule to the
center of mass of theith molecule; fH(q,q')=exp
[—Béu(0,9)]—1=6(lg—q’|—o)—1 is the Mayer func-
tion of the fluid-fluid molecule hard-core interactior(|q

—q'|— o) denotes the Heaviside step function. The summa-

tion on the right-hand side of E¢2.1) runs over all of the
components of the nanofluid mixture afide means inte-
gration over the surface of the sphere of the unit radius.
The kinetic equationg2.1) have been derived in the
framework of the FPT approadii] and are rigorous gener-

2.3

for each of I=(l4,l,,13) and each of the Maxwell-
Boltzmann distributionsP;(v) expressed in terms of the di-
mensionless velocitg= (m; 8) Y= &,i+ &) + &3k, so that
@;(&)=(2m) %exp(—£42), where £2=|£? and I,l,,l5
=1,2,3.... Also, for each of thed;(£) the polynomials
(2.3 form the basis vector sédl; satisfying the orthogonal-
ity and completeness conditions

f dé @O V(O Y (&)= by,

2 eOVHVE)=aE-¢), (24

where¥ V(&) and¥{)(& e M;.
The polynomials(2.3) can be considered as tierepre-

alizations of the kinetic equations obtained for uniform fluid sentatives of some abstract Kitd and ket|l') vectors

mixtures in Ref[5] to nanofluid mixtures. The kinetic equa-
tions of Ref.[5] in turn rigorously generalize to dense fluids

the Enskog-like kinetic equations describing uniform fluids

of low density (see references in Refgl] and [5]). This
family of kinetic equations may be called Enskog-like ki-

netic equations since they are linearized, rigorous general|
zations of the heuristic kinetic equation for dense gases origi-_

nally suggested by Enskd@]. Due to the representation of
the potentials of intermolecular interactions in terms of the,

short-range, hard-core, and long-range soft contributions

(which was suggested by Sung and Daljlg} for uniform
fluids and used by the authors of this paper in REEs4]),
the “collision integrals” on the right-hand side of E(R.1)
include the potentials of intermolecular interaction implicitly
through theequilibrium structure factors of the nanofluid
mixture.

V(& =(1 =155 &), 25

06PN (H=(&ll)=(Ellll),
which case the condition§2.4) take the form(I'|k’)
S and 2111 =1.

For each&F i(q,v;t) Eq.(2.1) can be spanned by the vec-
Ctors of the basis sek'| to read

)l

=3 3 [ dairymymlor), @9

V- —5F>
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where the “projections”(kilcSFi) of 6Fi(q,v;t) on its basis The above basis set vectors are labeled with the quasicon-
set vectorgk'| are velocity moments odF;(q,v;t), tinuum variablesén;(q,t), ui(q,t), 6T;(q,t), Pio(q,t), and

Qi(q,t), which correspond to the expectation values of the
2.7 vectors of the basis set and stand for the deviations of the

quasicontinuum number density, quasihydrodynamic veloc-

ity, and temperature of theh component of the mixture
and from their equilibrium values and for the kinetic contribu-

tions to the pressure tensor and the energy flux of the mixture

.

v- ai 5Fi>:J dv %H(V)V_ ai SF.(q,v;t), due to itsith component, respectively; the notatibmeans
<k‘|Fn|m'>=f dv dv' g (VTi(a,v;a', V)

<ki|6Fi>=f dv' i (V') 8Fi(q,V';t),

the unit matrix. The above quasicontinuum variables are de-
(2.8 fined as

5ni<q,t>zf dv ¢ (v)6Fi(q,v;1),
X P (v )P v'). (2.9 (2.153

The basis set ofl'|, or (k'|, vectors consists of infinitely ‘
many vectors, which correspond to infinitely many velocity pi(q)ui(q,t)zf dv miy(v) 6Fi(q,v;t);
moments of the distribution function and consequently to

infinitely many equations in the equation $216). Since one

cannot solve the entire set of equatid@sd), this set should 3kgni(q) Ni(q,t)zf dv ¢4 (v) 6Fi(q,v;t),
be truncated by choosing an appropriate finite number of

moments, which still have to supply a reasonably detailed

description of transport processes in the nanofluid mixture.

The simplest set of moments that satisfy this requirement is ﬁ?(q,t)EJ dv ¢ (v)8F(q,v;1);
that supplied by the first 13 velocity momentséF;(q,v;t)

[9,2]. The corresponding truncation of the systéf6) is
called the 13-moment approximation. In this approximation
the basis set of vectokk'|v) is limited to the elements

(mvy=yp'(v=1, (2.10

(2.15b

N
Qi(q,t)E;1 de P& (V)SFi(q,vit).  (2.150

_ The corresponding quasicontinuum quantities for the nano-
(uv=mp*2yv)=(mp)Yu, (211  fluid mixture are

2
<i|v>z(%>1’zﬁw$><v>=(%)1’2(&“7'”— g) v=|v? .
2.12 an(a,H)= 2, ani(a,b),
' (2.163
(POlvy=2"Y2y(v) =2 ¥2Bmw—3v2],
(2.13 N

) p(q)U(q,t):i:El mini(Q)u;(a,t);
(Qilv)=(3)MAm; g3 Y2y (v)

,Bmil)z 5 N
=(Z)1’2(m-B)1’2[—— Slv. (219
o 2 2 $ken(@)5T(a,t)= 2, $kani(a)STi(1),
where - (2.16h
N
pOW=1, y(v)=v, P°(q,t)=2,l P(q,t);
: mivz 3 1 ,Bmivz 3 N
WW=—-35-3 -3
' 2 28 B\ 2 2 Q(a,))= 2, Qi(a,), (2.160
e (V) =mw— 3021, wherep(q)==N,;mini(q)==N ,pi(q) stands for theequi-
5 ) librium mass density of the nanofluid mixture. The 13-
P (v) = m;v _i v=£ Bmjv _E v moment approximation for the distributionsF;(q’,v’;t)
Q 2 2B Bl 2 2 reads
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OFi(q’ v i) =(v'| 5F))
| v o 5n i(a, t>+ [mi(@ui(an)]
= 2 (VKK OF)
k=1

» :ni(CI)E Uisz do n(q— ko) gi(q,q— ok o)
=d;(v)[ ) (V') sni(q’ 1) k=1

+yP(v')- Bpi(a')ui(q’t)

N
e X6 [uda.) —u(a,n]+ni(a) 2 o
+ (V') BPkeni(A') Ti(a 1) =1

+ (v 1 B2PO(q’ 1) XN(q— ok 0)9i(q,0— 0 0) o [U(q— o O, 1)
+y(v)- EmiBRQi(a’ t). (2.17 —uk(q,t)]+ni(q)oﬁwf dor (g — 0y @)
C. The 13-moment equations for the quasicontinuum variables X giw(9,0— in,}),}. ui(q,t). (2.18

Using Eg. (2.17), calculating integral42.7)—(2.9), and
substituting the results in EQR.6), one can recover nonlocal
moment equations of the 13-moment approximation. The
simplest of them is the continuity equation for the deviationThe evolution equation for the deviatign(q)u;(q,») of the
oni(q,0) of the ith component number density from its momentum of theth component of the nanofluid mixture
equilibrium value from the corresponding equilibrium value is

1
[p.(q)u (a, t)]+ — [P"(q t)+keni(q) STi(q,H1]1+ = — ni(q,t)

,B (9
Cik(a,9") 1 1 ani(q)
:Eni(q)kzl jdq/ k&q _5nk(q,*t)_,8 q)E 2b|kg|k(qq o 0) N (q— oo t) + ,8 o
N N
’ "no_ ” " "ot ' i O'ik\/mk/mi
xgl J dq’| 1+Ciy(9,9") Zl f dg”n(q")Cu(q",q") | dni(q ,t)+4\/277ﬁ ni(q)kzl _1+mk/mi

XJ do nk(q_o'ik&)gik(qiq_Uik&)&&‘[Uk(qat)_ui(q:t)]
+4 \/ n( )2 \/7 f do n(q—oik0) gi(0,q— oiko) o0 [U(q— oo, t) — UK (q,t)]

mi 2 ~ - AL~ A
+4 \/ﬁ ni(Q)inf do ny(9—oiw0)0iw(9,q9— ojy o) oo U;i(q,t)
2

+kgh; (Q)gl mfdo Nk(0— 0k 0) Jik(0,q— ok 0) 61 5Ty(q, 1) — STi(q,1) ]

(@3, o [ 5 (@ 1@~ 01 TG i)~ T 0]

1o -
_Egl fdrrnkq k@) Gik(9, 4~ o) | :Pr(q,t)

N
+|Z41 1+mk/m Jda’gik(qu_Uika)&&&i[”i(Q)E’E(q,t)—nk(q_Uika’)lsio(q,t)]

N

+ 2 mfdon(q)g.k(qq 03 8) 566 PY(q— o) — P, 1)]

0'2 4 mB N o[ mg/m—1]Vm,/m
_ Tiw 0 7 il ik k i k i
2 do Ny(d— Ulw(r)glw(q q- Ulwo')l P (a,t) 5 2 kzl [1+ mk/mi]3/2

. . S, mB <  oh/mc/m
X da'nk(q_O'ika')gik(qu_UikU)[ao'_5']'Qi(qat)+g 2m & (L mdm e
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o e 2 ~ 4 mpg
J'dﬂ' gik(qvq_o'iko')[o'o'_5']'[ni(q)Qk(Q=t)_nk(q_aikU)Qi(Q=t)]+g - n;i(q)

N f/m m
x 2 Wfdag.kmq oi@)[ 06— 311-[Qua~ ot = Qua.D)] - Z—fo?‘w
Xf do (9= 01w,0)Giw(0.0— oiw0)[ 6o —3511-Qi(q,1), (219

whereinl ,=iio+jj o+ioi+jaj, by= 2oy, ik=1,... N, and quantitiesro, ooa, etc., are tensors composed of the unit
vector . The energy evolution of theth component of the nanofluid mixture is described by the equation

3 d
szni(q) 5T(qt)+ Q(qt)+kBT -[ni(q)ui(qg,t)]

(my /my) by

3kBTn(q N
2 [1+(mk/m )]O-Ik

f do N (q—oik0)9i(0,9— 0k 0) o [U(q— oo, 1) — UK(Q, )]

fd«rnk(q ok ik(0,d— i) - [U(0,1) — Ui (q,1) ]+ ke Tri(Q) o,

8bi)\ini(Q)) N Vmy /mibj

25720y )& [1+m/m ]

480;\in;(q) N Vmy /m; by

25m%oy &1 [1+m/m]¥ %oy

A . ) . N Im/mio?
Xf do n(q—o0)0ik(4,9— o o) 6T (q— ojo,t) — 6T (q,1) |+ \/7 21 [1+rt1k/m]g’2

my./m |)0'|k
+kBTn(q)|<§=:1 1+ (m,/m;)

Tik

X J do nw(q_in&)giw(q-q_aiw(})&‘ ui(q,t)+2\f2

Xf do N (= oik0)9i(9,9— o) 8Ty(q,t) — 8Ti(q,t) ] +2v2

fdcr 9ik(0,0— 01 0) 3o [ (Q)PR(0, 1) — ni(d— o) P, 1)]

. 4n,(q) % Vm/mios
2mpm, &1 [1+m/mi %7

f d& gy (0,9 01 &) 56 PA(q— oy, t) — P, 1)]

N 2 2
[—5+2(mg/m;)—5(m/m;)<]o; R ~ o
+k§=:1 5E1+mk/mi]; Tk Jdﬂ' N (d— o) Gik(d,9— o o) o- Qi (1, 1)
N m,/m;)b;
+2 5W[1+kmk/m]'k2mk | 46 gu@.a-0u@6- In(@QaD- (@~ 4@ a0
N

n 9(my /m;)bini(q)
k=1 57T[1+ mk/mi]ZO'ik

f do gi(9,9— oix0) o [ Qu(q— ik o,t) — Qi(q,1) ]

+ oizwf do ny(q—0iy0)0iw(9,9— iy o) o Qi(q,1), (2.20

where we have introduced the notatios= 75<B/64o JarBm;. The evolution equation for the kinetic contnbun@ﬂ(q ) to
the pressure tensor due to tith component of the mixture reads

J 0 & 4 Hc
B = Pi(a.) +2S0,(q,) +58S0(q,t)

N

=2ni(q >21

(m/my) o

Trm/m fdfr N(q— o0 gi(0,9— gy @[ oo— 3170 [UK(q,t) —Ui(q,t)]
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N Im) o’
+2ni(Q)kE (my /) o

2, mjd& N(4— k@) Gik(0,q— o) [ 60— 3110 [U(— oik o, t) — Uk(q,1) ]

+20'i2wni(q)f do ny(d— o) Giw(d,.q— oy o) oo— 3110 ui(q,t)

Jmy/mio? R R .
+4kgn;(q) \/ T fdo'nk(q_O'ika')gik(qu_O'iko')[‘ra'_'l][‘sTk(q t)—oTi(q,1)]

k " [1+m,/m]%?

|
(@ V22 S, ML [ 45 (0 o190 o9 [55— HILT gt

k " [1+ mk/m ]3’2

2:8 N vm Ulk

_5Tk(q1t)]+4 mm &1 [1+mk/m]3/2

fd«rg.k (0,9- o3 d0)[ 66— 3116 [ni(Q)PR(A,1)

mdmod [ L
@ PG+ A n(Q)Elﬁm dirgi(a,a- oy 60— 1116
><&:[ﬁ‘@(q—oik&,t)—ﬁ%q.t)]

2:8 N vm Ulk

~6 Tm; (&1 [1+mk/m]3’2

fdzr (0= 03 Gi(0,0— oy @) 6— 311a6:P(q,t)

[2 ] ] e paan
-6 W—ﬁoﬁvf don,(d— 0w 6)Giw(a.0= 010 o —51166:P(q.t)

N /mi) o2
+§,32 (my ml)a-lk

& 1+me/m; f don(q— ok o) gi(9,9— o) oo—31]10-Q;(q,t)

N 2
(m¢/m;) o . e ga .
5,32 W'{dﬂ' 9ik(0,9— o) oo—31]o-[ni(q)Q(a,t) —NK(a— ok 0) Qi(a,1)]
(me/m;) o3 A DU A
BN S, T [ dé gu(6,0- ) [56- 115 [Qa- o) - Qa)]
+‘5_1BO-§NJ do nw(q_in&)giw(Qaq_in&)[&&_%I]&'Qi(qyt)y (2.2

where we introduced tensors

. 1 ([alm(q)ui(g,t)] [d[ni(apui(a,n1\T] 2 [
snu<q,t>=§[ e ”+( s )]) }—gl[ﬁ[ni(qmi(q,t)]”, (2.2
d t) (dQi(ag,)\T] 2 [0
Sola= [ 2D 2] —§|%'Qi(ﬂht)], (2.23

and the dagger denotes tensorial transposition. At consigg) the second-rank Cartesian tensﬁgu(q,t) reduces to
niSy(a.t), whereS§,(q,t) is the contribution to the “shear rate” tensgg(q,t) of the system due to theh component of the

mixture. The second-rank Cartesian tenSgy(q,t) reflects the idea 0§,(q,t) in the case of the energy flux. The “shear
rate” tensors(2.22 and(2.23 can also be represented in the form

ANAD S 1 dQi(q,t)
%q(q], So(a)=3[21,+15—511]: Qﬁ(c?

(@D =2 21441, 21

3

andkkkk . The fourth-rank Cartesian tensty has 21 nonzero components

i, i, iikk, i, Qjji,  ikik, ik,
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Jig g, g, i, jikk, o jkjk, o jkkj
kik, kiki, Kijk, Kikj, ki kkjj, Kkkk,

and the fourth-rank Cartesian tendoris the tensorial product of the unit matrices. The above tensors satisfy conditions
|5|:” and|4'|:|4.

The evolution of the kinetic contributio®;(q,w) to the energy flux due to thith component of the nanofluid mixture is
described by the equation

J 1 9 4 5kg
QD+ S B+ 5 [(@oT(.0)]

2ni(a) < o ) ) e )
:ﬂ\/m 2 [1+mk/m ]3/2fdank(q_o-iko')gik(qaq_o-iko')[a-a-_5']‘[uk(q_aikait)_uk(q!t)]
2ni(a) < ;
B2npm & [1+mk/m]3’2jdo- N(d— o) Gik(4,9— o[ oo—31]-[u(a,t) —ui(q,b)]

Gl (q) |wf dUnw(q O-IWO-)gIW(q q- 0'|w0' [0'0'_ 3|] ui(g,t)
B2 Bm;

, 3keni(a) % (m/my) o

. & [1+mk/m]2fda’”k(q_Uik&)gik(q,q_Uik&)a{mk(q_aik&,t)—5Tk(q,t)]

. Skemi(@) (me/m;)of
BAm &4 [1+m/m]?

5kgn;(q)
2p8m;

f dong(q—oix0)9i(a,0— o 0) of STy(q,t) — 5Ti(q,t)]

O-izwf d&nw(q_ in&)giw(qvq_ in&)(}éTi(Q-t)

| 3m(@ % (my/m;) o,

f d6i(0,q— 0,0) 706 [ P(q— oy o, t) — P, t)]

T TBm & [Trmdm 2
3 O (mgm)ol . PP -
* Bm & ﬁ f dogi(d,0— o) 666 [N (A)PR(d,t)

_nk(q_o'ik&)lsio(q:t)] - 2,8m 2 don(q— ok 0)9i(0,9— oo — ool o: IADiO(q't)

ZO'iZWJdA ~ B B0
+m on,(q— 0y, 0)giw(d,9— oiwo)[ | —oa]o:Pi(q,t)

2W2ni(q) < (m/mp)3%ed
T eVaBm & 1T, T

5[ 0604(0.0- 0w 55— 111 [Qa- 00 - Qan)

(my/my) 320

N
5¢— E [1+m,/m;]>?

fd«rg.k(qq o[ oo—317-[ni(q)Q(d,t) —N(d— o) Qu(q, )]
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N

1 2 5 R A )
"5 VaBm, k21 ‘Tikf don(gq—o0o)g9i(d,9— oK)
-
\/mk/mi my my 2 L
8 [1+mk/mi]3/2|+[1+mk/mi]5/2 18_23_i+13 F.) oo -Qi(q,t)

13 [ 2 ) ) s
5 Vam U?Wf don,(4- 01w @) Gin(0,9- 0w §6—511-Q(a.). (.29

The coupled integro-differential equatiof®.18—(2.21) R 9
and (2.24 form a closed system of equations that can be  Ai(d— oo, t)=Ai(q,t) — oo EAi(qat)
reduced further to obtain a “quasihydrodynamic(or
“quasimacroscopic) description of evolution of the nano-
fluid mixture (Sec. ll)). Also, this system itself can be used
to obtain a detailed description of the quasihydrodynamic 1 2
velocity and temperature fields. In th.IS way, Eq2.18)— + = O-izk‘}‘}: — A(g )+,
(2.21) and(2.24 can be solved numerically, which may be 2 dqdq
easier than solving the resulting quasihydrodynamic equa-
tions. This can be seen from the structure of the right-hand
sides of these equations, which do not contain any spatial
derivatives of the quasicontinuum variables. The coefficients
coming with the quasicontinuum variables can be calculatedVhere theAi(q,t) are defined by Eq92.158—(2.150. For
numerically, provided the dimensionless data on the equiliv®xa@mple, by their definitions, the variablég(q,t) do not
rium values of the number densities and contact values of thicludethe nonequilibrium number densitieg(q,t) or tem-
pair correlation functions are known from theory, equilib- PeraturesTi(q,t), nor the differences between these quanti-
rium NEMD simulations, or experiment. Such calculations!1€S and their equilibrium values specific to uniform fluids;
would embrace classes of nanofluid mixtufeay, Lennard-

instead, they include the differencés;(q,t) and 6T,(q,t)
Jones onesfor each given geometry of the confinement.

in these quantities between the nonequilibrium and equilib-
However, some extra care is needed to calculate integrals &um systems, both of which are inhomogeneous. Such dif-
combinations of the quasicontinuum variables with the equi-

erences are not large, even near walls in the case of confined
L . m h rture from ilibrium i m
librium structure factors over the surface of the unit spher Systems, because the departure from equilibrium is assumed
fdo. Equations2.189—(2.21) and(2.24 generalize to inho-

%0 be small.

i ) Using the above Taylor expansions for the quasicon-
mogeneous fluid mixtures EqeA1)—(AS) of Ref. [2] de-  jnyum variableg2.153—(2.159 in Egs. (2.18—(2.2) and
rived for a pure inhomogeneous fluid. (2.24), one can recover the differential form of these equa-

tions. Further Fourier transformation of those differential
equations with respect to the time variablsupplies differ-
ential equations for Fourier transforms of the quasicon-
tinuum variableg2.158—(2.159. The next step in reduction
of the differential equations for the Fourier transforms of the
IIl. LINEARIZED NAVIER-STOKES EQUATIONS FOR quasicontinuum variables to the linearized Navier-Stokes
NANOFLUID MIXTURES form includes recovering the kinetic contributioﬁ‘g(q,w)
andQ;(q,w) from their corresponding differential equations
(here w stands for the frequency, which substitutes for the
A. Kinetic contributions to the pressure tensor time variablet in the Fourier-transformed equationand
and energy flux substitution of the values so obtained into the differential
equations for the Fourier transformg;(q,»), ui(g,»), and
The right-hand sides of the integro-differential equationssT;(q,w) of the rest of the quasicontinuum variables. For
(2.18—(2.21) and (2.24 include deviations in nonequilib- this purpose the differential equations f&¥(q,») and
rium values of the quasicontinuum variables from equilib-Q;(qg,w) should be simplified. Such a simplification may be
rium, assigned both to spatial poinfsand to theiroy, neigh-  performed upon consideration that the deviations of the non-
borhoods. It has already been notesee alsd11]) that if a  equilibrium temperatures and quasihydrodynamic velocities
nanofluid mixture is in a nonequilibrium state that is not farof the mixture components from their equilibrium values do
from equilibrium, such deviations are small for real confinednot vary appreciably in mean free patthich are propor-
fluid systems, even at high pressures and temperatures. Thiignal to theo;), because the nanofluid mixture is not far
in the o vicinity of g the quasicontinuum variables of Egs. from equilibrium. This validates the neglect of terms propor-
(2.18—(2.21) and(2.24) can be expanded in a Taylor series tional to the second spatial gradients Bf’(q,w) and
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Qi(q,w) and terms withSq(q,w) in the differential equa-
tions for these kinetic contributions, and indicates the small-
ness of the first spatial gradients Bff(q,w) and Q;(q,w).
Moreover, sincgay/, |oy|, and|o,|=<1, the conditiong3.1)

and (3.2) of Ref.[2] hold for any integrable, positively de-
fined functionf(q— oy 0):

J’ dOA'f(q_O','k&)g'a' . -0'7<J' dé’f(q—gik&)ga. . .O-B,

N o— N o—
m m=1
m=13,...

J' d&f(q"aik&)oi>fd&f(q_o'ik&)o'?zai

>~-~>J' dof(qg—ou0)opg - o,
N o—
m

m=34, ...,
(3.1

wherea, 8,y,p=X,y,z andm signifies a number of com-
ponentso,--- o, . The first spatial gradients @Io(q ) and
Qi(g,w) (which are small themselvesome into the differ-
ential equations foPiO(q,w) and Q;(q,w) with multipliers
that are proportional to the integrals of odd setgrafver the
domain ofe. Using the approximation

fd&f(q—aikaam&
1 R A A A ~
= [dit@-0ud) [ 0555 32

and the first condition of Eqg3.1), one can prove that the
multipliers of the first spatial gradients d?io(q,w) and
Qi(g,w) in the differential equations for these kinetic contri-
butions tend to zero, so such terms should be neglected. The
remaining coupling terms in these equations can be esti-
mated upon usage of the above conditi®4) and the ap-
proximation(3.2). The solutions of the differential equations
for the Fourier transforms of the kinetic contributions into
the pressure tensor and the energy flux due toi tthecom-
ponent of the mixture are

u(q,w)
72(q KA
7 (9, w): a9

—8wmri,7<q,w>§dgn<q,w>
N

PY(q, w>——22

LIUDMILA A. POZHAR AND KEITH E. GUBBINS

N I8T(d, @)
i) . !
szl Por(a, ) g
N
+i—§¢wﬂmmirmq,w)ni(q>k§l

(i ‘925Tk(q,w)
X Pih(g,o): Toa9q

+2m\mBMi\;75,(9,0) (9, ©)N;i(q)

N
x 2 Pida,0) 5Ty (0, ), (3.3

EN) 32 (q.a). 2TT00)

Qi(Qaw)— = &q

N
—4mhimh(0) 2, Q(0,0)5Ty(qw)

+E N (G, @)Ni(q)

12
5
N 2
2 - 9°6T(q,w)
“ 999

. N
-3 \/m ﬂiTTA(q.w)kzl

U (g, )
Jq

+3\/% M (G0N ()

_FPu(g,0)
9999

2T, N
+6 m oiwmiTh(d,@)ni(q)

N

x>

k=1

_as o) T x
4 Bmi 77|7'|)\(q,11))7'|7](q,(1))

xCH(q):§n(a,0).

X Q%k w):

X 2 QAuk

éfjilz(qiw) : uk(qiw)

-

(3.9

In the above equations the quantities

PI(q,0),27(q,0), andCl(q, o)

+amy Ti*q(Qaw)ni(Q)kgl o

. U, (g, w)
X PR W

+8m 7, (q,w)ni(g,w)

N
x 2 o 2 PUNa,0)- (g, o)
— BVmBmM\; 7, (d, ®)ni(q)

are coefficients that depend upon various smoothed in-
tegrated over the domain af) values ofthe equilibrium
structure functions y{q) andg;(q,q— o o) of the nanof-
luid mixture; the corresponding explicit expressions for these
quantities are given in Appendix A. The notations, and-:
refer to tensorial convolutions; the tensg{f,(q,w) is de-
fined as

.(Q)
aq

Sa(a)=2[21,4+15— 511 J:u(q, @)
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The contributions to the shear viscosity tensor due to th&Ve note thaf 7, n]glniz 1/B. Thermal processes are char-
kinetic contribution of theith component of the mixture to acterized by the relaxation times
the pressure tensor are

* 7in(Q)
~(2) * 1 5 ™m(0,0)= ————, (3.9
N (0, @) =47 pin(q) 77,(0, @)) Sikz[ 214+ 15—311] 1-iwm\(q)
3bym, /m; fdA i where

2l 1 mim] o N (q—oik0o)gik(,q 1 N o A

~ oy 60— 1166 n@=2 ?(a_“) [[1+mk/mi]372
3b|k‘f 7- ( w) n \/mk/mi 18_23%

T a1 m/m 2 31+ m/m ]2 m
xcg>(q,w).fd& N(q— ok o) +l3( ) ”de- N (q— ok 0) ik (1,9 — T O)
Xgikm-q‘“ik‘})[&&‘%']‘}]- 39 +% [ 05 9,(a.0- 0, PN (@) 100,

The explicit expressions for the quantitie!) , are 13\f2 Tiw
: i
The contributions to the thermal conductivity tensor due .
to the kinetic contribution of théth component of the mix- ~Oiw0);
ture into the energy flux read
T 3205 [ N 75Kg
- 9b; My /m; o =95 Vmag Neiz oo
M2 (0, 0) =47\ 75(0, 0)N;(Q) 5ik|+5ﬂ_[1l+—W miB 64oi T M,
15V7w
de& N(g— oik0)gik(0,q— ok o) oo (@)= 8o 2 T')‘(q)’

1 . . and[ 7j, 1o *\i=5kg/28;m; .
7 Ti*k(q,w)C(Fl)(Q)i'Pg)Tk(q,w)]- (3.6) Equations(3.3) and (3.4) generalize to inhomogeneous
fluid mixtures expressions derived in Ref&] and[4] for
The relaxation times of molecular “friction” processésr ~ PUre inhomogeneous fluids. They also contain terms propor-
the viscorelaxation timesare given by tional t(_)_th_e second spatial gradl_ents of the QeV|at|ons_ in
nonequilibrium values of the quasihydrodynamic velocities
7.(q) and temperatures of the mixture components from equilib-
T”?(q’ w)=——T " (3.7 rium, which have been neglected in the corresponding ex-
[1-iwT n(Q)] pressions for pure inhomogeneous fluids.
. o ) ) Substituting the expressior{8.3) and (3.4) into the dif-
clude 6Ti(q,0), andu;(g,»), one can recover for these Fourier
N 5 transforms a system of differential equations in partial de-
=z 2aiVm/m; JdA (= 011 5) G rivatives that is a generalization of the conventional Navier-
(@)= &1 vio2 1+ m/m; o Aok ik(AA  giokes system of equations valid for uniform fluid mixtures
i ! (see, e.g., Ref5]) to the nanofluid mixtures. Also, this sys-

.1 - . . tem generalizes that of Rdi2] derived for pure inhomoge-
—ow0)+ 3 f do gii(9,9— ojjo)[ni(qd— o} 0) neous fluids.

B. Continuity equations

1/202\,\, N .
—ni(@) ]+ —— fd«r Nw(4— 0w o) Giw(d,q , _ o _
i Fourier transformation of the continuity equations for the

components of the nanofluid mixture leads to the equations

- in‘});
) — . J : ik)
[7" ]—1E 160-” ,l m= 5 ﬂ _Iw5ni(qlw)+% M(q'w):kgl MR (Q)'Uk(Qaw),
T s Vamt 16 Vg (3.9
7 (q)= SymBm 7.(9). where the flux\;(g,w) of the ith species particle number
7 4o 7 and the Cartesian three-vectox§i¥(q), which are included
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in “thermodynamic sources” on the right-hand side of Eg.
(3.9), are given by the expressions

N
Ni(a,0)= 2, | Niy(a)-uda,0) — 5 ol
i &uk(q!w)
X‘I’(llelf)(Q)i g |’
(ik) 4 J (ik)
M@= sni(@)1 + o5 % () + 3 Ok 5q P15 (@),
NR(q =—5.k2 o} @6y (o) + o fpy ()
2 .
T g P T 5 Tl g 2@
+ 5Ik0-|w(l)0|iN)(q) (31()

In the above expressions the Cartesian tendéfS(q) have
resulted from smoothing of the values of equilibrium struc-
ture factors of the nanofluid mixtur@e., integration of the
structure factors over the domain of) and are inherited
from the integro-differential equation§2.18—(2.21) and

(2.24). The explicit expressions for these quantities in terms

of the structure factors of the nanofluid mixture are given in
Appendix B.

C. Momentum conservation equations and tensorial viscosities

Conservation of the momentum specific to tkie compo-
nent of the nanofluid mixture is described by the equation

i II
% : i(qaw)

—iomni(Q)u(q, )+
N .
:kgl {Rtlk)(q,w) . uk(qiw)

+T\’,('k)(q w): %Vn (g,w)

+RI(q,0) 6T (q, )}, (3.1

where the momentum fluxdd;(q,») are defined as

©)= 2 iy(q,0),
1
Hil(quw):E |{ oni(q,w)
N
—ni(q, ) X, qu’Cik(q,q’)énk(q’,w)
k=1

N
-y f dg'ny(a")
I=1

N
—ni(q)g,l f dg’

><C|k(Q"'q,)} 5nk(Q'-w)] ,
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N
Hi2<q,w>=k§l ¥ (q,0) 6T (q,0),

N
d
Mis(g.0)= X MF(q.0) - 5T(d0),
k=1 q

2

N
My(0,0)= 2, TE(0,0): = 0T(g,0),

dq9q

N
Hi5<q,w>=gl (g, 0)- u(q,0),
N ~
Hi6<q,w>=k§1 ILE)(q,0):S{n(a, o),

2

9999

IT7(q, w)—E Y (q,0)-: U(a, @),

Mg(g,0)=— E I (q,0): —uk(q ),

Mig(q, w)—E g (0,0): 55 SPn(a0). (312
The Cartesian tensors  I{¥(q,w), n
=1,...,9,from Eg. (3.12 and the tensorial coefficients

R(q,w) on the right-hand side of E¢3.11) are compli-
cated combinations of tensorial quantities involving various
tensorial functions of the smoothed structure factors of the
mixture. Regarding Eq:3.11), our major concern is the Car-
tesian tensors of the diffusion coefficients and viscosities,
which are defined below in terms of the tensbks)(q, w),
Hi('g)(q,w), and Hi('é)(q,w), respectively. Thus we list
these quantities here and leave the expressions for the

remaining tensorsII{Y(q,w), n=2,...6,9, and the
tensorsR (¥ (q,w) to Appendix C,
N
17 (g,0)= 2, [4wmar‘knl<q>fr,,<q,w> SicLs
+ i (@) [ Pla.0)
1+m/m AuldH
4
+ m Fos(9):0 72 (g, 0): 16
4
2w II(le (||)( )@_
1+ m, /m aq

X[ni(@)75(0,0) Pli(0,)]

6v2m/mofi

B m m ez M@ e)

3\/2mk/m|0'|| 7|

=(il)
xEM(q)- Qk(a, Ot B my Im 12
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X 75(0,0)ES(q)- © QW0 w): 16

3\/m<7n’7l =(il)

5[1+m,/m]32 =0 (@)-©

x[ny(q) 7 (0, ) @4)4(a, w)]] (3.13

3

(q)} 72(q,o)

I/m|

UHCROEDY f2[5n14

4
2m, o

Tk Tk
Wﬁ V1+ mk/mi

4

qu’gk)(Q)

(Il)( )0 —

0 (2)
1+m,/m aq Mk (q,w)

4'770'”(0'”

* il
" 1+my/my mni(Q) 77,(0, @) Fos'(0): O

~ h ~ 6\/_0'|
X P, 0) - 1,+ 51T /m ] m7i(0, )

3\/_0'”

xEZ1(q)- QVuk(q w)— m Y

X2 (a)© = [m(q ©) QFu(d,0)]

120—|W aj|
m 7 (Q) 75 (0, @)

XE(9)-0QINq,w)- 1,
4770'ﬁcr|4k
1+ m /mk

Xf)(Alznk(q,w)]l

il 7, (0 )y (0) Ay (0):

ni(q)77,(q, ®)A%(q,w):

- 2770 (le 7

X'i’g?,k(q-w)]15kl
3\ﬁ 5 . :
+§ ﬁ0'”77|[n|(q)r,)\(q,w)Bi|(q)-

3
X QUi(a.0) )1~ ¢ ofymIni(@)7h(d )

XBﬁ(q) QVuk(q w)]15k|]. (3.19
) 47To-|k77k (ik)
Iig'(g,0) = Trmem Tien(d @) Fos ' (Q)
37T¢T|k7lk
2{[1+mk/m]3/2 kﬂ(q w)Tk)\(q w)

X E89(q)- OC(q): 1 (3.14)
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In terms ofith contributions to the shear rate and vorticity
tensord2,4], the quasihydrodynamic velocity of th#h mix-
ture component can be written as

aui(qlw)_" ~ 1 J
g u(@e)TWilge)+ 1 20 - uig0),

(3.195
where theith contribution to the shear rate tensor is
1] ou(qe)| [ u(ge) f
2 Jq Jq

1 9
- § | E 'Ui(q,w) (316)

and the corresponding contribution to the vorticity tensor
reads

. (317

. T
Wiu(q, w)_ aUI(q'w))

99

(aU(q w))
aq

Expressing the first and second spatial gradients;@f, w)

and the tensosfJ »(0,w) in terms of the above shear rate
and vorticity tensors, one can rewrite the momentum conser-
vation equation3.11) for the ith mixture component in the
form

| I <
—lomni(@ui(g.@)+ 2o - 2 Th(d,0) +11(q.e)

N
=2 {R{¥(0.0) U(q,0) + RE(0,0):5¢(0,0)

+R(q,0) 6T (q,0)}, (3.18
where the vectolT!(q, ) is
N
. Jd -
I(q.0)= =22, fi(00): 2= Su(d0)
k=1 q
N P
- Wi(qo):- a—Wku(q,w)
k=1 q
N P
2 ik(Q, 0 %(% -Ui(d, w))
N (0, )
+k21 (8q Gl )) aq
9 N
- [2 @ 7 oo
() k)
+E A5 |2 50 o Sin(G,@).
(3.19

In this expression notation8 dq|, andd/dq|y, mean differ-
entiation at constant;(q,w) andVn(q), respectively, and
the contributions to the viscosity tensors are as follows.
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“Molecular friction” of the ith andkth component mol- laminar flows is an order of magnitude smaller than the sym-
ecules is described by the fourth-rank Cartesian tensametric component, thith contribution to the shear rate ten-
7(d,»), which is the tensoriailk contribution to the shear sor. This accounts for neglect of the turbulent viscosity in the

viscosity tensor of the mixture, case of laminar flows.
As follows from Eq.(3.18, inhomogeneity in fluid den-
- 1 A d sity would cause instability of the laminar type of fluid flow
=_ (k) . _ (k)
(0, 0)=7 [Hi8 (9,0):01 aq 117(0,0) and would lead to various types of turbulent flows in the

general case of large-scale inhomogeneous fluid systems
(which also are described by our theprin this respect fluid
flows in nanopores of several molecular diameters in width
are a lucky exception, because turbulence cannot develop in
where the Cartesian tens@®(q,w) is given in Appendix such narrow channels. Thus we note that in the case of
E. The tensoriaik contribution to the turbulent viscosity nanofiuids the turbulent viscosity tensor is not of much im-
tensor of the mixture is portance.

The viscosity tensors for the nanofluid mixture can be

—G(Sk>(q,w):®16], (3.20

~ I — o d © recovered from Eq(3.18 upon representation of the quasi-
Wik(q,0)= g (q,w).@le—% I7(q,w) hydrodynamic velocity of theith mixture component in
terms of the quasihydrodynamic velocity of the nanofluid
(k) o mixture u(q, ) and the diffusion velocity of théth compo-
+Gr (q"")'@lﬁl' (32D nent of the mixtureV;(q, o) [9],
with the Cartesian tens@{(q,») listed in Appendix E. Ui(Q, @) =u(q,») +Vi(q,w), (3.23

SorT;ngrlﬂf.g I?‘%%SI%;esnescogn(()jf.:2?1kmcl:);trl:;i'gﬁstem:zgrtegéf'nes bstitution of Eq(3.23 into Eq. (3.19, substitution of the
' ibution, ! » ACTIN€Ehtained result into Eq3.18, and summation of Eq3.18

as over the indexi running through the mixture components.
) 1 9 The viscosity tensors of the nanofluid mixture emerge in the
Ki(q,o)= 3 [H§g>(q,w):|_[£ -l'li“;)(q,w) ‘| simple form
N N
~afqe] 22 Ha0=3 3 inae, @24
N N
where the expression for the Cartesian ter@@?(q,w) can - _ -
be found in Appendix E. W(q,w)—igl &L Wi(a ), (3.29
The above contributions to the viscosity tensors of the
nanofluid mixture are complicated tensorial combinations of ~ N N
guantities composed of smoothed values of the equilibrium K(g,w)= 2 Ki(q,0). (3.26
i=1 k=1

structure factors of the mixture. These contributions are

.ﬂOW mdepender]t because they do noF depend on the Paliye note that even for homogeneo(mulk) fluid mixtures

ticular type of fluid flow. However, for different flow types, . .

the role of different components of these tensors can varEqS'(3'24H3'.26) d_o_ not reduce_ 10 a single summation of

; . . the tensorial viscosities of the mixture components

dramatically(this depends on the interplay of components of

the spatial gradients of the quasihydrodynamic velocity, ) ) )

which should be convoluted with the components of the vis- D. Energy conservation equations and tensorial

cosity tensorg so the gross result would look as if the vis- thermal conductivities

cosities of the fluid mixture are flow dependent. This feature Upon substitution of the result8.3) and(3.4), and usage

of the viscosity tensors is exactly the same as that for thef approximations(3.1), (3.2 one can recover from Eq.

viscosity tensors of a pure nanofluid and is discussed in Ref$2.20 the energy conservation equation for tiie compo-

[2—4] in great detall, including theoretical and numerical cal-nent of the mixture in the form

culations of the viscosities for several particular cases.
Comparing Egs(3.20 and (3.21), one can see that the

major contributiongthe first two terms in Eq(3.21)] to the

ik turbulent viscosity tensor is twice as large as that takhe

3 J
) Kgni(Q)iwdTi(q,w)+ 79 -Ji(g, w)

shear viscosity tensor. However, in the momentum conserva- N (iK) (ik)

tion equation for théth mixture component, Eq3.18 [see _kzl {R,7(0,0) U9, 0) + R0, 0) 6T (A, @)
also Eq.(3.19], theik shear viscosity tensor convolutes with R

the gradient of thé contribution to the shear rate tensor and +M(q,0):S8,(0,0)}, (3.27)

theik turbulent viscosity tensor convolutes with the gradient .

of thekth contribution to the vorticity tensor. The latter is the where the thermodynamic sourc@(¥)(q,w) are listed in
antisymmetric component of the gradient of theontribu-  Appendix D and the fluxe§;(q,») are given by the expres-
tion to the quasihydrodynamic velocity, E§.17), which for  sions
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8 N 2
(A40)= 2 Jia(g,0), Jis(@,0)= 2 J'(Q.0)-: 5o uddw),
N
Jia(@0)= 2, Jig(q,0) 5T q0), N

J
Jia(0, @) =2 Jf?(q,w):%uk(q,w),

Jn(q,w>=k2 I9(qw)- — 5Tk(q ),

7 Jis(a, w)—E IB(q,0) 1= SK(q,).
mk(qaw);

N
Jia(Gh0) =~ 2 Jg(.0): 7o

(3.28

N
Ja(@,0)= 2, JP(0.0) u(q0), , )
k= The Cartesian tensord{’(q,0), y=1,...,6, from Eq.

(3.28 are listed in Appendix D, and the Cartesian tensors
I¥(q,0),3%(q,0) of the second and the third ranks, re-
spectively, are

N
NECHOED) 3¥(q,0): 8 (q,0),

9(m|/m )b|| F('I)( ) .X(Z)( ) 48\/2mk/m b”(T,k)\ b,k s (I) ( )
TEa i rmmp? 2 MO B T my 2 Yoz (

I¥(q,0)= E [

12
T v mBM\, 77,(d, )N Lit(Q): P, )]+ mm(q )N My (9)- QT (0, 0) ]z

9(rnllrni)a-ilbil (||) (2)(q (1)) 18(m|/mi)0-i|)\lbi| % (i ()
T 10apirmim2 o8 (@O T e T mz. @ @)Fes (@) O Ll @)l
642m ImioiN, | ) 32y2m Imait\,
+15[1+—m|/mi]3'7 ()N (Q)F37(q): P(VTk(Qaw)_W
2m\2m/maii\
XFG(@):0 - [n,7<q W)@ PR(0,0) ]+ T 1(0,0) 7 (60)n(a)
xFiD(q):0P{)(q, w)l] (3.29
9(m /mi)bi i 9(m /mi)bi i i
N(q,w =|§1 TrMm(q w)m(Q)[ m IR QATk(q.w)_Wmlllnz]lz Fis(a)-O
~ ~ 54(m /mi)bi i)\ i
XREG0) Lt gt T F(9)-0 S [ (G0 (0) QU a.o)]
32\/2m|/m O'||)\| 32\/2m|/m O'||)\|

T 11t m/m 2 > (0 o) (Q)FS(q): Phh(d,0) - T 1+ m /m, 2 3 T,(Q,0)Ni(Q)

16\/2m|/m O'||)\| (II)

XFE(@): 0P (0,0) - 1o~ Ty 772 Fos (@ >®—[T.,,<q w)ni(a) Pit(a,0)]] (3.30
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Theik contribution to the second-rank Cartesian tensor of The above expressions for tensorial viscositi824)—
thermal conductivity immediately follows from E3.27), (3.26 and thermal conductivity3.32 generalize those for
bulk fluids [5] and pure inhomogeneous fluidig,4]. The
complicated structure of these coefficients reduces to rela-
tively simple expressions if there is any spatial symmetry in
the systen(see examples in RefEl,2,4)).
and the second-rank Cartesian tensor of thermal conductivity

of the mixture is

Ni(0, ) =38 (g, 0):1,+ —q J¥(qe), (3.3

N N IV. DIFFUSION IN NANOFLUID MIXTURES
)\(q w)= 2 2 ;\ik(q,w). (3.32 A. Diffusion velocities of the components
=1 k=1

Together with Eq(3.23), Eq.(3.11) provides a recurrence
The analysis of flow dependence of the tensorial thermatelation for the diffusion velocities of the components of the
conductivity of the nanofluid mixture is qualitatively the nanofluid mixture. Further usage of the relatid@sl) and
same as that of the above tensorial viscosities. We note th&B.2) for approximation of terms on the right-hand side of
on letting w—0, one can easily obtain the values of theseEqg. (3.11) and evaluation of the terms with the spatial gra-
tensorial transport coefficients in the low-frequency limit dients of the diffusion velocities on the left-hand side of Eqg.
from Egs.(3.249—(3.26 and(3.32. (3.1)) lead to the following form of this recurrence relation:

N

(G @)+ 2 3‘fff|2k7':d(q )
|1

[1+m/m] "o ni(q)

d

375(q,
Vi(q,w):——Tld(q ©) W—'B[

205ni(q)

35(q)- ( I (q, w))

N N

3\/20'i2k7;d(q w)
- kzl( 20, w)+_q 3 w)) _ﬂk(q @)+ é [1+my/m]of,ni(q)

N
k () — . —
‘”'.El( a0+~ 7q T (qw>) 7 OTi(a@)

3\/_0'|2k Thq(q, @)
[1+m/m, ]llzo'kknk(Q)

+ 1
™M=

N
15 (q, w)) oTy(q, w)+2 Z ( IL).(q, ‘0)) |(q,w)}

kl(&q

N

3205 hy( 0, @) RO
[1+ mk/m]l/za nk(q) 2 (9,)6T(q, )

2\2mm; o Tii(9, @) o (q)- EN: 3\/_0,2kr732
[1+m;/m,]

N
R (0,0)6T(q, w>+2

|
M z

;\—
=

- X

Fi [+ mk/m 1"n(a)

2 5 (0)-Vi(q,0)

J 4.9

In this expression the tensorial coefficients are those defined R R R
by Egs.(3.12, (C1)—(C3), (C9), and (B1), and the added X f do ny(q—oiw0)Giw(4,9— oy 0),
subscriptr means reduction of some of these coefficients.

ThusTI¥) (g, ) contains the first five lines of E¢C4) and (4.2
RN (q,w) consists of lines 1, 4, 6, 10, and 12 of EG9).
The diffusion relaxation times are defined as
N 74(Q)
Tid(q,w):T—(q). (42()
—lwTig
3VmTem,
Tia()= "% 7 Tial0), (4.23
11
B. Diffusion coefficients of the nanofluid mixture
N P In Eqg. (4.1 the first term in square brackets contains the
V2my /m;o
T w)=, k—(lrl'z"z f dér ni(q major contribution to the diffusion coefficients. The addi-
i [1+me/m] "o tional contributions can be found upon solving E4.1) by

2 iteration methods. The simplest trial solution of this equation
~ N ‘/QUIW . . .
— 0 ) Gi(0,9— o ) — is the same expression as K4.1), but without the last term
Tik0)Yik ik 2 . . . .
Tijj on the right-hand side. Such a zero approximation for the
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diffusion velocity of theith componen¥?(q, ) can be sub-  In this expressiofiP(q)/ ny(d) | z,n](i) denotes théth con-
stituted into the last term on the right-hand side of Eqgl) tribution to the Frechet derivative of the equilibrium pressure
and supplies the first approximation for the diffusion veloc-Of the inhomogeneous fluid mixture with respect to the equi-
ity. Carrying on such step-by-step approximations, one caf{Prium density of thekth component at fixed temperature
obtain a solution of Eq(4.1) of any desirable accuracy. and the equilibrium densities of the remaining components
Upon thenth step of this iteration procedure the term con-©f the mixture. The notation Tr means the trace of a matrix

taining the diffusion coefficient reads and.t_he_quantity\i_k_(q,q’) is a complicated functional of the
37 (quw) P equilibrium densities of the components, which depends
- _w 1@ — IL,(q, o) upon the equilibrium free-energy density and the structure
205ni(q) Y m; §9q factors of the nanofluid mixturésee Ref[12]). Expression

(4.6) reduces further in the case of weakly inhomogeneous

N fluid mixtures. For such mixtures the quantitids,(q,q")

N d can be neglected, the Frechet derivative of the pressure with
+,§i Qin(q. ) Q@) aq (. @) respect to the kth component density reduces to
[dP(q)/on(q)]18(q—q’), the second term in Ed4.6) be-
NN N comes negligibly small, and the pressure itself can be written
LRI ; 0i(.0)Q(q.0) Q)(a,0)  in the form

n

1
S+ 7. Piini(a)

N N
Pa)=2, 2, ‘m(q)kBT

1
-5 m(@ny(a)

XJ’ do gij(0,0—0j;0)

(4.3
where there are terms with sums on the right-hand side of ® dgij(r) )
Eq. (4.3, and ><f dr g (a,q+ 1) —— r|[r[*, (4.7)
(Tij()'
3vV2m.a2ni(q) () i i in-
Qu(q @) iTikNi (g 2 (qe), (4.4 where ¢;;(r) is the attractive part of the intermolecular in

~[1+m/m] 2080 (9) teraction potential specific toandj components.
Using Eq.(4.7) in Eq. (4.6), substituting the result into
- R R A Eqg. (4.3), and extracting from Eq4.3) the contribution pro-
Qik(Q)zf do n(q—oi0)gi(9,0— gio)[6o—31]. portional to the gradients of the nonequilibrium densities of
(4.5  the components, one can derive the following expression for
the contribution to the diffusion velocity of theh compo-
To extract an explicit expression for the diffusion tensornentV;y,(g,w) due to the gradients of the nonequilibrium
from the term(4.3), (4/9q) - II;1(q, @) must be related to the densities:
gradients of the nonequilibrium densities of the components.

Such a representation follows immediately from the defini- Vio(Guo) = — 3 [7B 7ia(d, @)
tion of these quantitiefsee the second expression in Eq. ivn(G, @ 207 m; ni(q)

(3.12], but the result obtained is not very useful because it N
expresses the diffusion coefficients in terms of the direct cor- A aén,(q)

relation functions, which are not well known for inhomoge- Xazl Dia(9,@)- aq

neous fluids. Another possibility is to rewrite the definition

of IL1(q, ) from Eq. (3.12 in terms of the equilibrium \here the second-rank Cartesian tensdy,(q,w), a
pressure of the inhomogeneous fluid mixture. Using a gener=1 2 ... N, is given by the expression

alization to inhomogeneous fluid mixtures of express@i)

, 4.8

from Ref.[12] for the functional of the pressure tensor of an . N A
inhomogeneous fluid, one can derive the expression Diu(g,0)= Eia(Q)JFIZ;i Qik(, 0) Exo(a) Qi (q)
N
SP(q) A
o= [ a3, || 220 S
o= o2 {20 | OPEDEICE

QO , QS , EAa
_ini(Q)TrAik(q'q,)]5nk(q,aw)| (@) Bl 0)Ejol D

~n@ | dq’qu"le :1{

1 1
~3B n|(q”)TrA|k(q”,q’)] on(q’,w)l. (4.6 Ei(q)= B

oP(q")
on(q")

B,n:|(|) and Ell(q) is

1 “ ~
5i|+§ ni(CI)bnf do g;(q,9— 0 0)



5384 LIUDMILA A. POZHAR AND KEITH E. GUBBINS 56

C. Phenomenological definition of the diffusion coefficients

+i2 N (@) ( )fdA 79i;(9,9— oy o) X
4 < M a)ni(q U—&m(q) The phenomenological diffusion coefficienB (q) are
defined by the expression for the mass flux of ittkecom-
dei(q") ponent,J’(q),

- g—g ni(q)L (.ﬁqdq”lq”lzq”- —aq gi(9.9")
¥ IP(q)=mini(q)V;(q)
ani(q) -

= —;m DR(q)ym- g D/(q)

B * " "
—52 ni(Q)nj(Q)J . dg"[q"|?
] o’ija+q

d InT(q))
aq ’

xq

(4.10 wherelﬁr(q) is the thermal diffusion coefficient. A compari-
son of this expression and E(.11) at «=0 leads to the
relation

", d¢'l (q”) aglj (q:q”)
dq ani(a)

The expressior(4.9) defines the tensorial diffusion coeffi-
cients of theN-component nanofluid mixture. The deviations R m; R
of the number densities of the components from the corre- DR(q)= o ni(a)[ Dy (a) 17, (4.15
sponding equilibrium values, featured in E4.8), are lin- !

early _dependent and related b_y_ the equation of state. Thg oo the definition4.13 has been taken into account.
latter is unknown for a nonequilibrium state of the system.
However, as we already noted, near equilibrium the structure
properties of the mixture do not differ significantly from
those at equilibrium. Thus we can use the equilibrium equa- In the case of weak inhomogeneity of the nanofluid mix-
tion of state to express the linear dependent quantityure the terms with sums on the right-hand side of @)
onp(g,w) in terms of the rest of the densities, pressure, andan be neglected, and from Ed4.9), (4.13, (4.2b, (4.20,
temperature of the mixture. Thus it follows from Eg.8)  and(4.14 it follows that the theoretical diffusion coefficient

D. Diffusion coefficients for binary mixtures of nanofluids

that of the binary mixture[lﬁlz(q)]T atw=0is
3 [mBTh(0) o |- - 4DTAa)n(q) Bmany(q)
. = — S — . D = = = =
Vivn(Q,@) 2_<Ti2i_ m; n;(q) |;m Dii(q, @) (D22 @)Jr N1(Q)Sdo ny(q— 012009150, 0— 0120) p(q)
- P.(q)
_ Pi(d,) B, (qw)! - pi(d) ddn,(q) X E12(Q)_P2— Eqp(a) |1, (4.16
Pm(dw) ™™ p(q 99 1(9)
(4.11) where
Where % 3\ 27TkBT m1m2
D)= 2 v Mpp=—=—"r.
N 16maiNn(q) Vvmy, m;+m;
P'(q)zi; Eaa), (4.12 From Egs.(4.16 and (4.15 one can derive the following
relation between the phenomenological diffusion coefficients
andm is the index of the linearly dependent density. of the inhomogeneous binary mixture:
From Eq.(4.1)) it follows that the theoretical diffusion
coefficients of the nanofluid mixture are 5o (q):[mle(Q)
12 m,P1(q)

374(q,w)py(q) 7B

[Dil(q,w)]T:W ™ :2EQ;§3;: 212‘1:leg:;glzgq,Q:legﬂﬁgl(q)_
A P(Q) - 1(d 20— 0120)912 4,9~ 012 @17
x| Bi(@,0) = 5o Dim(@h ) . '

In the particular case of a homogeneous binary mixture this
(4.13 expression reduces to

The above diffusion coefficients are not linearly independent o | MiPol o
and satisfy the condition D= | p. P21
201
> mi”i(CI)[bn(q ©)]7=0 (4.14 Wherelf)ﬁ2 is the homogeneous reduction of the correspond-
i

ing phenomenological coefficieri#.15 expressed in terms

of the theoretical diffusion coefficier(#.16) calculated for
which follows from=]_;min;(q)V;(9,)=0. At =0 from  the homogeneous mixture. This relation has been originally
Egs. (4.13 and (4.149 one can derive the frequency- derived in Ref.[13] for a homogeneous binary mixture of
independent diffusion coefficients of the nanofluid mixture. hard spheres in the framework of the Chapman-Enskog
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method[9]. Here we have shown that the same relation alsmamic equationgSec. Il). This can be alleviated, in prin-
holds for a binary mixture of any homogeneous fluids pro-ciple, by expanding the basis set beyond the first 13 velocity
vided their intermolecular interaction potentials can be repsmoments of the singlet dynamic distribution functions of the
resented as a sum of hard-core repulsive and soft attractiv@ixture components. However, it is well known that for ho-
contributions. mogeneous fluids more accurate estimates of the transport
From Egs.(4.9), (4.6), and (4.3 it follows that the diffu- coefficients at zero frequency, both in the conventional
sion coefficients of the nanofluid mixture depend strongly orfChapman-Enskog procedure and in the 21-moment approxi-
the equilibrium pressure of the mixture, which in the abovemation[9,14], lead to negligibly small modifications of the
case depends explicitly on the attractive part of the intermonumerical values of the transport coefficients and these are
lecular interaction potentialsee, for example, Eq4.7)]. It proportional ton’h?g(c); the corresponding correction fac-
follows that the values of the diffusion coefficients are verytors are (1.016)" for the shear viscosity and (1.025) for
sensitive to the approximation made for the equilibrium presthe thermal conductivity. There is no physical reason for
sure of the nanofluid mixture. In this respect the diffusionthese correction factors to become much larger in the case of
coefficients differ significantly from the viscosities and ther-inhomogeneous fluids. Thus we do not expect the use of the

mal conductivity coefficients of such mixturgggs.(3.24—  13-moment approximation to lead to large errors.
(3.26) and (3.32)], which do not depend on the equilibrium Calculation of the transport coefficients based on Eqgs.
pressure explicitly. (3.24—(3.26), (4.9, and(4.13 requires data on equilibrium

distribution functions of the nanofluid mixtures, in particular
the number densities;(q), the contact values of their pair-
V. SUMMARY correlation functionsy; (q,g— o ¢), and the effective hard-
core diametersr;, calculated for the composite intermolecu-
far interaction potentials. Such intermolecular interaction
otentials have to be obtained from more realistic intermo-
cular interaction potential®.g., the Lennard-Jones model

The transport theory presented above is a rigorous gene
alization to nanofluid mixtures of the approach-4] sug-
gested by the authors for pure inhomogeneous fluids an

based on the rigorous developmén of the Mori-Zwanzig potential3 by means of the Weeks-Chandler-Andersen

projection operator method. Although rigorous, this theory(WCA) [7] or Barker-HendersorBH) [8] methods. The
remains tractable due to an advantage of dividing the potervvCA method supplies hard-core diametefﬁ’CA tha.t de-

tials of intermolecular interactions into hard-core repulsive end on the equilibrium number densities of the components
and soft attractive contributions, suggested originally byp q P

Sung and Dahlef5] for homogeneous fluids. The transport and the temperature of the mixture, whereas the BH proce-

BH
coefficients derived in the framework of this theory have adure leads tar;~ that depend only on temperature. From a

simple and tractable structure that permits their further invesdynamical point of view the differences between collisional
tigation and evaluation. encounters described by the model potentials of this theory

The theory incorporates two basic assumptions. The maand more realistic ones are small, so that it is reasonable to
jor one is the neglect of the dynamic memory effects in thedccount for s_uch differences in the_ potentials by choo_s_mg the
generalized Langevin equatiof6LES) used to derive the hard-core dlqr_neters to be functionals of_ the equilibrium
kinetic equations(2.1). The main contribution to the dy- number densities and temperature of the mixture, as has been

namic memory effects comes from repeated core collision§u99€sted in RefS]. , ,
and is important for dense bulk fluids]. Nevertheless, the N the case of the WCA choice of hard-core diameters, the

success of the theory in calculating the shear viscosity of résent theory includes an assumption that the hard-core di-

WCA .
pure dense fluid confined in slit pores of several moleculafMetero is the same for the |00%bciens't'e$(Q),”l(Q)

diameters in widti3] suggests that such effects are not im-and ni(q+a"),n(q+q’) whenq’<oj™". Since the den-
portant for fluids confined in narrow capillary pores. Thesity dependence of;)“ is weak[7], we believe this is a
physical reason for this is that the confinement suppressegpod approximation. This consideration is also supported by
repeated core collisions of the fluid molecules, reducing theithe results of Ref[3]. However, from a rigorous theoretical
mobility. However, in other applications such reduction of point of view the above transport theory should be regarded
molecular mobility may not occur. Examples include sys-as a zeroth-order theory with respect to the density depen-
tems often considered in fluid mechanidow of colloid  dence ofo)“*, provided the WCA choice of the hard-core
mixtures, flows containing macroscopic and/or mesoscopidiameters has been used.
particles, and flows of fine solid particledluid-fluid inter- In order to avoid calculation of;, for every local set of
faces, relatively large pores filled with colloid mixtures, andvalues ofn;(q), i=1, ... N, one can use the BH choice of
membranes of living cells. In such cases the neglect of th@ard-core diameters, which do not depend on the densities of
dynamic memory effects may be approximately corrected fothe components or the density of the mixture. In the case of
by adjusting the theoretical results to match simulation datmanofluid mixtures confined in narrow capillary pores this
for mixtures of hard spheres of the same hard-sphere dianseems to be the best choice of the hard-core diameters. How-
eters[5]. Analytic corrections for this effect can also be de- ever, for other systems, where the neglect of dynamic
rived by incorporating the dynamic memory effe¢tghich  memory effects may require alleviation, the treatment be-
are included into the GLEs of Rdfl1]) in the kinetic equa- comes more complicated because it is not clear that the main
tions (2.1) and developing the transport theory close to thecontribution to such memory effects is from repeated hard-
lines presented above. core collisions only.

The second basic assumption of the theory is the use of The above equilibrium distribution functions of the nano-
the 13-moment approximation in deriving the quasihydrody-fluid mixtures can be obtained by direct equilibrium com-
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puter simulations. These results may be expressed in dimeequilibrium molecular-dynamics simulation. We also plan to
sionless form and as such are valid for any and n;(q). consider further theoretical investigation of the pressure de-
Another possibility is to determine the distribution functions pendence of the diffusion coefficients in the framework of
by analytical means, using integral equations of equilibriumegs. (4.6) and (4.8) for several particular cases. Finally, in
statistical mechanics or the density-functional theory. Fofuture studies we plan to derive analytic expressions for the
practical purposes direct computer simulation data seem tghermal diffusion coefficients of nanofluid mixtures and to
be more useful, as they should reflect the structure of a pagnalyze the properties of the remaining transport coefficients
ticular nanofluid system in greater detail. in the quasihydrodynamic equatio(&11), (3.27, and(4.1),

Calculations of the diffusion coefficients given by Egs. which do not have their immediate counterparts for bulk
(4.9, (4.13, (4.15, and(4.16 also require data on the de- f|yid mixtures.

rivatives of the equilibrium pair-correlation functions with

respect to the component densities. These data can be ob-
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APPENDIX A: COEFFICIENTS IN EQS. (3.3-(3.5

The quantityP{)(q, ) is the following Cartesian tensor of the third rank:

N

~ m,/m, . . . . m, /m

p(l) < — ) — _1 _s v
uk 1+m,/m; f do n(q—oko)0i(9,9— ool oo— 35l ]o 5”(21 1+m /m,

~ ~ ~ A A ~ Oiw 2 ~ ~ ~
dea- nl(q—Ui|0')9i|(q,q—0i|0)[0'0'—%']0'+5ik(—0_ ) fda' Nw(d— 0iw ) Giw(d,q— 0w )
ik

V275 (q,0) - R R A mn
X[oo—3l]o+ m&cq(qyw)~fd0 N (g— ok o) gik(0,q— oixo)[oo—31]

3V275(q,0) [y
tok —g

) C(I)(q )- J'da'nw(q O-IWO-)gIW(q q- U,WO')[(T(T—‘|]

Tik

3‘6 I*( 1 ) (i ~ ~ ~ A A
—6ik+qwcg><q,w>-|§1 | 46 nia-m @01 @a-oudra— i (A1)

The fifth-rank Cartesian tens(ngLk(q,w) is defined by the equation

mk/mi

i)
1+ mk/mi

Auk= f do n(q—o0)gi(0,9— o) 60— 31000

3‘/jTi*)\(q1w) A(i) ~ ~ ~ A A 1 A A
+ AT+ m ] Co'+ | don(qd— 0y 0)gik(9,9— o) 00— 31 ]00. (A2)

The expression for the second-rank Cartesian teﬁlﬂ(q,w) is

~ ) _32y2m,/miofni(q)
)=

O — g0 0 — .oV oro— L
_15777-;*}\[1+mk/m-]3’2 do n(q—oy0)gi(9,9— o) [ oo—31]

6(my/my)ofni(a) -
5[1+ mk/mi]z

cl(g,0)- fd«rnk(q o) 9i(0,0— 0y 0) O

ni(q)

aq +U|Wn (q)f do ny(q— Ulwo')g|w(q q- O-|w0')0'

- 5ikég>(q,w) [

6 . i (my /m;) - - A
— 5 Skni(a) CQ(q w) 21 mfdﬂ' ni(q—oy0)9;(q,9- 0 0)o
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5387
32v2n;(q) N a”\/
— ik 157 (o) 2 [T+m, /m]3/2 f do ni(9—0y0)9i(9,9— o 0)[6o—31]. (A3)
The remaining Cartesian tensd?%)Tk(q,w) and’f’ﬂ%k(q,w) are of the third and the fourth ranks, respectively, and are given
by the expressions
- 3v2m /m;biy . R Apan .15 o
ﬂvl)Tk(Qaw)Ew[lTlmli]lsli f do nk(q_O'iko')gik(qu_o'ika')[‘"’_%l]"""1_6W7rx(q'w)cg)(q'w)' ik
9(m,./m;)b f P Al
m o Ny(q— 0 0)gi(q,9— 0 0) o0, (A4)
’iD(i) ( - 2\/2mk/mo,4k fd'\ n(g—o 5 N o ")[""_l”AA 9w(mk/mi)of‘krf‘x(q,w)
ATkl g, @ [1+m/m ]2 o N (gq—oiko)gik(q,d— oi0o) oo~ 3l |JoT 8[1+my/m
X EQ(a0)- [ 4 o000~ 048 o (85)
In the above expressions and in E§.5) the coefficientég)(q,w) is the third-rank Cartesian tensor
A(i) N (m|/m)0'ﬁ ~ ~ ~ A A 1 ~ ~ A~
Cq(q,0 EZ [1+m /m]o? do n(q—0y0)g;(q,0-0y0)[oo—;3l]o+ | dogi(d.q9—ajo)[ni(q)—ni(q
- 1
~ A A 1 ~ 0-iw 2 ~ ~ ~ PN 1 ~
—oji0)]loo—sl]o+2{ = Jdﬂ' Nw(d—oiw0)Giw(d,9— owo)[oo—3l]0. (AB)
1
The quantity@{)(q,w) is the Cartesian three-vector
“ (@) . 6(m/m)oini(q)
Q= i 5q + SikyNi( Q) f 4& Nu(A= 01 G40~ 01 = —gr 1
N (m/my)af . . .
fdﬂ' n(q—oik0)gik(0,9— 0k o) o+ ¢ 5|kn(Q)z mfdﬂ n(q—oy0)9;(d.0- o 0)0o
—E77,(0,0) (0,0 () CE(9): Pi(g,0). (A7)
The third-rank Cartesian tens@ATk(q,w) is
0 (mg/my)o (i)
Atk @)= m d& (0= 048I Gi( 0,0 o) GG+ 5 7,(0,0) CP(A: Phr(d,0).  (A8)
The quantitygfj,l g,w) is the Cartesian tensor of the second rank defined by the expression
2| 0"2k
~ g ~ ~ Al A A i
Qik(d,w)=— mZ 2 1+ m /2 f do ni(q—0y0)gi(a,9-oyo)oo—3511+ o2 [1+ me/m 2
IW w
XJ do n(q—oik0)gi(9,9— oo oo— 511+ 5ikf do ny(q— 01y 0)Giw(a,9— o o) co—51]
5V2 ol
e (0wl Pla,0). (A9)
W
The third-rank Cartesian tens@%k(q,w) is defined as
Q= — 2D 45 (0 0496 0[5 21T+ o e P aw).  (ALO
Qul(g, A1t mdm 2 | 4o da-owe gi(a,9— o) oo—31]o 167, q q

Finally, the fourth-rank Cartesian tenségf,k(q,w) is given by the expression
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0 V2o ~ ~ ACAA 209~ 5 4 i 53¢ )l
Qau(d,w)= [T+mam ] do n(q—oik0)gik(d,0— oixo)[oo—5l1]oo+ gmoj T, (4,0)Cp’'(Q): Py(d, @),
(A11)

In the above definitions of the tenso@("(q, w) we have used the third-rank Cartesian ter@x(q), which is given by the
expression

N
cl(a)=3| do gii(q,9- 0 &)[N(q) —ni(q— 0} 6) ] 6ea—2, o)’ do ni(q-0y0)9:(q,9— oy 0)[| — o0]o.
P(q) gn(qvq ii )[ |(q) |(q i )] “ o I(q il )gu(q,q il )[ ]
(A12)

APPENDIX B: DESCRIPTION OF “SMOOTHING” PROCEDURES

The following Cartesian tensors, vectors, and scalars have emerged upon derivation of the quasihydrodynamic equations for
the Fourier transforms of the quasicontinuum variables from Ej$8—(2.24 and(2.24:
. ~ - a~ A - Tir 0 R ~ n~ A ~
@, (q)=n(q) J don(q—0;0)2i(q,4~ 0k 0)0 O+ = 7 { J don(q)gi(99— 00 (q— 03 0)T "G,
m

m+1

. ~ A ~ Tir 8 A ~
FErlzk)(Q)”—'ni(‘I)J' dog(q,9— Uiko')o'"'0'+7“(i [J ni(q)gik(qu_oiko')o'”'U}s
m

m+1
—(ik) ~ AAFAA 2 T n NAArAA 2
EY N q)=n/(q) | do gu(q.q— o0o)o{oo— EI]'*‘Ta_q : do n(q)gi(q.q9— 0 0)oofoo—51]|,
Fi(q)=n(q J 468 (q,q~ 03 O)0 - &,
m
E{ (@) =ni(q) f d& g;(q.q9— 0, 0)6{ 66— 31] 0,

W (@=n(a) | deu(aa-oudIn(a=oudli -5,

m

‘I’(ik)(Q):ni(Q)f do gi(a,9— ok o)N(q— o 0) of oo —51]
O'ik 19 ~ ~ . A~ A A 2
+ 29 do ni(q)gik(9,9— oko)n(q— oio)oo] oo— 51|,
‘I’(oik)(Q):ni(Q)f do gi(0,9— o) (q— o o) of oo— 1 ]a,
‘I’(zik)(Q)Zni(Q)f do n(q— o) gi(a,q— o) oo— 3511,
‘I’(lig)(Q)Zni(Q)f do gik(9,9— o) (q— o) oo—31],
5 (a)=n;i(q) f d& gik(9,0— oy @)N(q— o 0) ] 66— 511 (B1)

In these expressions the - - o mean tensorial products of the unit vecteiby itself, m means the number aF components
in these products; the indéxruns through the components of the mixtukes 1, . . . N, and the confinemeritvalls) w; and
the indexi runs through the components of the mixture,1, ... N.
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APPENDIX C: COEFFICIENTS IN EQS. (3.1 AND (3.12

The tensorial coefficient¥(q,w), =2, ... 6,9, which are included in the fluxd$ ,(q, ) on the left-hand side of Eq.
(3.12), respectively, can be expressed as foIIows. The second-rank Cartesian[léﬁ’\(sqrw) is

N 3
kgo
H§'2‘>(q,w)5|21 [an (Q) Sik Ol + m Sa®Y () + 2 mpmN N (a) (0, @) T (0, @)

3

4
_ . ; _ J
x| ulet T F E{”(q)}:P(T'&(q,w)—wwﬂmm Trm i P (@:0
) 8V2Bmmain 4\2mBm o\
X (0,070, (P01 g e o 74 (0.0 5 (@) Q00+ g g e
32ym Mo, 16ymBm o\,

xE5"(q)- O - [m(q ©) QN CI)HW [75(a, ©)Ni () A (Q): Pr(a, )]+ I51+m/m]

d - - 16 ~ ~
x| 5g L@ @M@ Ai(@): Pird @)l | — 8 75 VTBMONL7,(d 0)ni(@)Af (@) Prrda.e)]:
1

2
i m; - ~ R
TP B ) AP G s

8
— 5k| 1_5 \/W,BmiUﬁN)\

d ~ ~
| = - [7,(d,0)ni(9) AR (9): P (a,0) 1| +
o0q 1

: 12 -
e ’3 — [BY(@)- M (G,0)]1+ 5z VmAm o..x. 5 Lh@en(@B;(a)- Qta.o)l;
1
12 -~
~ i 55 NTAMIRA| 5o [T (@0 (@B QU (.0) ] ] (&)
1

where[T---T]; means that the left index of the tensbr--T has to be convoluted with the near@gtq to the left; the
notation® means that the right index of the nearest tensor to the le® bdfs to be convoluted with the nearéséq to the
right of this sign. The explicit expressions for the Cartesian ter®rsE'%, andFX can be found in Appendix B. Thenh
rank Cartesian tensofls,, are defined and discussed in Appendix D of R&f,

Aom)ijh-apy=0iabip - yy m=1,2... .

2m m

The Cartesian tensotd and B are defined by the expressions

A . J 1
Ai(9)=Fg3(a) + oy ~— 70 F('k)(fl)Jr = o 5_ Fi(q),
(0 ~ . R NC20d ) ) T 1
Aii (CI)=f do nw(q_o'iwo')giw(qu_a'iwa')lP+k21 _2_a'iw jdﬂ' nk(q_a'ik()')gik(q,q—()'ika') m a'a-a--{-E IP ,

vamy /m

~ ~ ~ R .~ d )
Bi(q)= [Tt m /m]? f do gi(0,9— o) [ni(q) — (L —m/m)n(q— ogo) [ oo— 511+ o 79 -EW(q),

N O'izk\ 2mk/mi

igﬁ(Q):kZ:l o2 1t me/m ]2 f do n(q— 0k 0)gi(a,q— o) oo—51]

V2 [ 46 (@~ 0 )9(@.0- 05— 511 ©2

The second-rank Cartesian tend#)(q) has the form
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N k : R 3
IL5(q) :Z — Ok 2[1+—mk/m] ba () — 15 V7T,3m|)\|7'r7,(qyw)n|(Q)[5i|14 1+m Im, Fi"(a) [ P (a,)
16\/7Tﬂm A 0'I : 20'i 2pm _.
" g 1rmim] F5@© 5 [T"'(q ()P0~ g o 2 @)
. ol 28m, . 4ai\
XNE(@0) + 5 me Vo B0 (@0 2 2P (g ST m Jm 7 V2TAm T (4,0)
4
. . 1y . -
XE(@)-© QIG0) 1~ T VTBMT(A,0) 7 (A ) (D FE (0):O PG, o)

160',,)\ NEgeint

151+m, /m]
+ & Sgo2 NV mBML (0, 0)ni(@) AL (@): Pk (0, ) 1.~ Zoi N aBmi 7.(d,0)ni () By (4) - Qi (d,0) ]y

[7,(0, @) (@) A (9): P (d,0) ]

+ E 8o TBM[ 75,(d,0)ni(a) BY (9) - QiTy(a, w)]l]- (C3

The quantityII¥)(q, ) is the fourth-rank Cartesian tensor of the form

(a,@) %ZN = TBMAN(a) 7 (q,0) | 10+ 1+m /m. Fe(a) |: ;4k(q,w)_%
XER(@:0 7c [ (o) (@ P01+ f{’i‘im (@, (00 PO B a0
+ % n(a) 7 (0, 0)EN(0)- Q0. 0)+ %:gn(q).@isz>(q'w).i4
% 2@ 0 2o [m(qm(q ©) Qiy(a, w)]]. (4

The third-rank Cartesian tens]ifi('g)(q,w) is

203 V2m /() o
E(9,0)= E o i fmgiz (@ Brofnn(@) 7, (a0 et g (@) Pl@0)

dwaiioiom J ~ 2400y -
" Trmm 705 (@:0 55 (@) 7(0,0) PU(d @) 1+ gr e (@) 7 (6.0)E (@) Ql(a, )

12(T||(T|w7l| 2

20
m:d”(@ © —[n|(CI)m q.0) QN(q,0)]+ irm /m LA () : 72(q, )],

i|‘7|k77|
1+m|mi

O-IW(Skl[AI (q) (q )]+

dJ ~ "
[% (@) (0, @) A (a): PRl g o) 1

1

+5 (m /m|)0'||77|[7|x(q w)Bll(Q) QVuk(q)]l
1

—27oy, 0'|k77|5k|[ [ni(@) (@ A1 (a): 'P(Aluk (9,@)]1

— 202, 78 (9, 0) BY(Q) - QUL (@) 11+ 2 (m/m.)al.m PRUICIENC! ®)By(q)- Q&'Lk(q)h}

1
Sa.wn.ak.[ -[ni(q) .Aqw)@(q)éﬂ@(q)h} ] (C5)
1

The fourth-rank Cartesian tensﬂi('g)(q,w) is given by the expression
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3 4
Tk Mk

I§(q,0) = — 8wt (d,w) Mﬁm Fi(a) |+ m 'k><q>®—[rk,7(q ®)]

3 I
B \#kﬂk]?’/z k”(q w)Tk)\(q w)E 'k)(q) C(k)(q)
K/
3 I
Z‘r[lz(:nk:"r; = =09(q)- @ — [Tkn(q )75 (q, w)c(k)(q)] o
k

Finally, the fifth-rank Cartesian tensbE&(q, ) is

4
Tk Mk
1+m/m;

|k77k

ko _
8 (0 )= 2\f[1+mk/m]3’2 o

(9.0) 78\ (0,0) () - 0CX(q):ls.  (CT)

T%,(0,0)Fo&(q) +

The tensorial coefficient®R(%)(qg,w) on the right-hand side of E43.11) are given by the expressions

. 203 \2m, . P 2 o?ym _
RM(q,0) = X [qi'k) + o — W }—2\/— P YA AL}
u (Q,0) JrBl 1+ m/m V2 02 (@) +oik aq (a) 78 CKE [1+m Im 2 02 )]

2

+2\/2m k@ () — LAY(Q): 72 (0, 0) ]2 ’ () 7 (9, ) AY(Q):
,30 q ""’&q Q): 7 (0, w)] 270, Uuk’?uaq&q i(Q)7,(4, w) A4 (4):

X Pli0,0) 1o~ dmod,ofonn (@) 7h,(d,0) Af () P, w)——o.wn. 7g [A(@0)Bl(@) QRl(a.0)]

9? o 6v2 0
|w77| 9999 :[n; (Q)Tm °F w)Bu(q) Q uk(va)]lz 5 U|W77|n (Q)Tm(q a))B (q)- Q (0, )

2

A dmalaiom &
T 7a [ A@ R G0

1+m/m; dgdq

3

5
N
2

L[y (0) 770 ) Ay (0): PRk, 0) 112

8770'i|0'|k7]|

& ST )t (0 (@) P G0) + o \/H [ (0,0) By (0) - QFli(a,0)]
1+m /m, Q) 754, 1(Q): Pyila, 5 T/ Ry aq nla i) Lyud ) s

3 m; 2 072 * ~ =)
+ 5 Vi, i ) m3[n|(Q)TM(Q-w)Bi|(Q)' Qauk(d, @) 12
6 2m, 2 2 * ” (|)
+§ W‘TuUlwﬂ|n|(Q)Tlx(q,w)Bi|(Q)' «(q,0)(, (C8)
S (ik) Kgo| 2 (ik) (ik) /— J
7-"'T (g,@ )= m (I)Ol (Q)+0'|k_q (I) (Q) |k|21 1+m/m (q) mUIW '<9q
prs

'[ni(q)Ti*y](qaw)A q): 'Png(q ®)]1— B TAMo\ 3999 [ni(a)7,(a, w).A1 (q): PVTk q,0)]12

= m\TBMof AN (A)77,(0,0) 7(0,0) AR (a): P(d,0) — \/ﬁ ' .Zwaq [BY(a)-A(d,0)]s

2

+EmBmol N7 (0, 0) BY(q) - Qg 0) — 22\mBm,

N (32ymBmalN, 4 ) )
2 15[1+m||7n|1]l 7q (@ 7(0,0) Aq (@): Perdd @)

16ymBmoiN, &2 . N -
FTq T mIm] agg M@ 7(0.0) A0 (@ Phh(a.0)ls

d
TN Fgag (M@ T (.0) B(@) QUr(@.0)]i
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277\/77'Bm|0'%)\| - ,\ 1 ﬂm
FTrmim M@ 7,(@.) 7 (0.0) A (@:Pria.e) 5 \ 7 ol 5o aq [Bu(@)-MP(q.0)]
2

— & mBm o\ 75(q,0) By () - QNG ) + 2 mBmiod N ——— 2090 [ny(Q) 75.(0, ) By (q) -

ATk(q )12, (C9

(ik) 8ok * ” 2 * %0
Rs"(q,0)=— Trm/m Ticy(0h @) A (Q) + 4oy, 7 Sk 77, (0, ) A5 (Q)
— 3 motemamiImer, (9, 0) 75,0, 0) Bi0) - CR(a) + 3 7oy 71 6y75(0,0) 7 (0,0) BE(A) - CE(a).
(C10
In the above definitions the notati¢f - -- T],, means that the two left indices of the tenJor-T are convoluted with the
indices of the spatial gradients to the left of this tenggither in the above expressions themselves or in E2141) and

(3.12], which are separated frofiT - - - T];, with the convolution sigfs). The Cartesian tenso¥), E(K) @K and Wk
are defined in Appendix B.

APPENDIX D: COEFFICIENTS IN EQS. (3.27 AND (3.28

The coefficient)¥(q, ) is the second-rank Cartesian tensor

3keT(M/m)by . e
TP @) =ka (@) dil + 5 o= )+ 3 [2[ci.<q>nﬁk2><q,w>]l

J ~ n
+amoin 7 (@) 7, (9, @) Lig(A): PR g o) 11

+3 Vﬂ (4, w)[Mn(Q) QVuk(Q-w)]l
1

/ J
3 % ”l[% (@) 7 (0,0) M (@) - QU@ @)1

27, %
+6 mmwmm(q)m(q,w)
27 27(m/m) o by o2, . J -
Vo e (@0 o (@) (6,0) Q4@ 0]

[27 16ym /m; ,3 Z i -
" ﬂ_r: [1+Im./(rrn|i373|/|§77I (@) 7,9, @) F5(0): Phi(, )

_ [ 2 8\/m|/mi0'ﬁ0'|2k77|

B L+ mm® For (@:0 5 [nl(q)m(q ) Pi(a, w)]J (DY)

1

9(m; /m;) by,

: IR S Lo LI (1)) Wall)
5I|I+ 57T[1+m|/m|]2 FZ (q):| guk q'w)

where the second-rank Cartesian ten&w(q) is defined as
- 2\2m/mof, d ,
~ _ ~ ~A A . (k)
Lix(q)= \/—[l+mk/m ez ni(q) f do gik(0,q— oik0) oo+ o a9 F59(a)

Uﬁ \/m|/mi[1+ mk/mi]B/2

— 0 fdAn JEp—— X ’_."’"" D2
Ik|:1 Uizk‘/mk/mi[1+m|/mi]3’2 o ni(gq—o0y0)g;(9,9— 0y 0)o0 (D2)

and the Cartesian three—vect&tik(q) is
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2
Ok

~ mk
(9= sz | 52

2
mi)—5(%) }f do n(q—oik0)9i(q,9— oiko) &

m;

’ - - .. B(m/m)of - o
+ Sy | do nw(q_o'iwo')giw(qvq_o'iwa)0+m ni(q) [ do gy (9,9—ojko) 0o
N2 2

toik =~ 'F(zlk)(Q)_fsikl : I l

Jq =1 U'izk(mk/mi)[1+m|/mi]2

. (D3)

f do ni(q—0y0)9:(q,0- 0y o)

The third-rank Cartesian tensq?z‘)(q) is defined by the expression
9(my /m;) by

157wy, | m
(k) - _ 0 % * A S Caed
‘]|2 (q) 4 Bmk Tkn(Q!w)Tk)\(Qlw) 57T[1+mk/ml]2

2im/m)oibiknec [ T a . k)
+ 8[1+mk/mi]2 Bmy Fos (a)-© a [Tk-,;(quw)Tk)\(Qaw)cP (]

16, 2mk/mi0'i3k77k 8\/2mk/mi0'i4k77k l 0

77 i i . * P
~Tormm? N am Tl @@ FS@ e \ g Fod(@:0 So [(a.0)] ks,
(D4)

Sl +

Fé‘k)(q)} -.c¥(q)

The definition of the fourth-rank Cartesian tenséf (g, ) is

27(mk/m')0"kb‘k7]k T . ~ ~
@)= =g T m]r V pm, o (@0) (0.0 (@) 0C @)1,

8v2my /mio i

* Tiemam® N am 7,0, 0)Fos' (). (D5)

The third-rank Cartesian tensafy (g, ) is given by the expression

3kgT(my /m;) oy b
477[1+ mk/mi]

N
J@w)=2 [ - 5 ®GS (@) — dmaimni(@) 7 (0,0)] £i () PR A ) ]2

B\ o (D (@) K (@) QU @0)]1— 371\ e 7 ()] 1+ e DI
7N gm, M RUINGE i) Laud Q@) 1= 37 Bm, T a, T S m i 2
XF(“)(q) ~(;2$)k(q,w)+ 27(m|/mi)0'ilbi| Fgé)(q)@i[Tﬁ\(q,w)ég)k(q,w)]
2 ! 10\mBm[1+m/m;]? aq !
2W2(myImy) oy o by » - n 4\2m;/mjo3 . .
_ * , F(") NO) ()] ) 1,— F(”) : (2) ,
5w Bm[1+m /m ]2 N(a) 7\ (0, @)Fo3'(Q) - © (0, @) - 14 T B Ltm/me (@): 7y’ (0, @)
2\/2m|/mi0'ﬁ (il ) 0 ~(2)
+ \/m[l_’_mllmi]g/z I:04 (q)Q E /1% (q,w)
8v2m,/m,oi o . - .
m, /m; o, 07 (q,w)FSL)(q)@’Pﬂﬁ q0)-1u . (D6)

"~ JmpmiLrmym

The third-rank Cartesian tensdft)(q,») has the form
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¥(q,0) =|El| \/ “mm(a)7h(dw)| 8

27(my /my) oy by )

ST LTI [P
T Ea{Lrm/m]? 2 -

* (q.0)FID ()00 (0,0):1
" 10/mAm 1+ my /m 2 7in(@,0)Fo3(A)- © Qrii(d, ) 1s
27(my /my) oy by E(i)
- LOVm B Lt m /m 2 Fos'(Q) - @ [nl(Q)m(q ©) QUhi(d,)]
8\/m|/mi0'ﬁO'|4k7]| 2T () 0 \/2m|/m 0'|| (I|)
+ [T+ m /m ]2 \/ ”l(CI)Tn,(q w)F37(q): 'PAuk(q w)+ aBm Lt m /m Foq'(Q):O

. ~ Aym/moioion
X (0,0): 1o~ T Foa'(9):0 - [n.(q)r. ,(0,0)Pili6,)].
The expression for the Cartesian three-ved{§i(q, ) is

_ No(32 . .
36(@0)= 55 2 m g @@+ 2 [E VaBmn i (a) 7, (d,0)[ £i(,0): Per(d,0)]y

\/ M[— Ini(a@) 77,(a, ©) £1(0,0): P (0,0)]1| +[M;(a)-A2(0,0)];

1
12
T 7T7\|[ [ni(a) 7 (a, ®) M (q,0)- QATk(Qaw)]l
1
N 9(m, /m;)b; i
=4\ (9,0)| 6 WF“)(Q) - Q(q,w)
18(m /m,) i bi A
5[1I+m|7n|1-]lz F@-0 —[m(q ©) Q(q,0)]
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B LCILACRBENCL LR R
_27T\/2m|/m O'|| |

[1+m /m 22 Foa'(0): - [nl(Q)le,(q ®) 75 (9,0) PR, 0) ]}

The coefficient£?¥)(q) on the right-hand side of E¢3.27) are given by the expressions

3kBT(mk/mi)bik Jd

R A0)= 5 o mim] aq P (@F dwoiuksTn(@) f d6 Ny(0= 716 Giw(0, 0~ 01w &) &

|
ke T(my/m;) o o) (m,/my)os i N J A 2
rmam 2o (@ kBTé.k; —1+m, m @@+ 2250 [La(@: 3 (d )]y

2

J - ~ ~ "
+4may mi[m(Q)Tf‘,y(q,w)ﬁn(Q)17’(A|Lk(q.w)]12+87T<T|2k71|”|(Q)Tf,,(q,w)ﬁn(Q)iPﬂ&(q )

9 -
#3\ g 717 (70,00 K@) Q6,011+ 3 e s (@) 7 (00) K ()

x Q) ( 27 * A SD
Auk(Q, ) ]1o+ 6 Bm T mM(A) 7\ (d, @) M () - (g, @) |,

(D7)

(D8)

(D9)
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vm blk

ok[1+m m: ]3/2 q)j do n(q— Ulko')glk(q * 0'|k0')
i

N v b|| 96\Qbii)\i \/mk/mibik J

o g o)A O .k
Sikh; (q); Wfdff n(q—oy0)0;(d,9—o;0) |+ 25720 [1+m/m]%2 aq ®;7(q)

mgrik)(q,w) = 257720-“

N
2 [15¢ mA; S aq -[0i(@) 71,6 @) Ly (A): PR 6 0)]a

92
+ 15 v M1 Zaag L@, ©) Ly (a): Pih(a,0) 12

-~ -~ J -~ ~
+ 2\ TBmN N () 7,(0, ) 75 (0, @) Ly (Q): Q&(q,wwﬁ-[Mn<q>-x.<k2)<q,w>]1

2

12 0
— 4\ 7 (a, ©) M () Q O(a, w)+— TN T 2099 [ni(a) 7 (a, ®) M (Q)- QATk(q o) ]2/, (D10)
(ik) * p 15 ™ * * %K)
Rs™(Q,0) = =877, (Q,0) Lix(A) = 7 7 Bmy T (9, @) Ti (0, @) Cp7(Q). (D1D

All notations in the above expressions are those of Appendixes B and C and of Secs. Il and Ill. We note that the quantities
R(q,0), M9 (q,0), andRi¥(q,w) are the Cartesian three-vector, scalar, and the Cartesian second-rank tensor, respec-
tively.

APPENDIX E: G TERMS IN EQS. (3.20—-(3.22

The termsG¥(q, 0), G{¥(q,w), andG{(q,w) are the Cartesian tensors of the fourth and second ranks, respectively, and
are defined by the expressions

Anol, . an 1 an -
Gék><q,w)=%r:n<q,w>[F85k>(q>® T R T 4}
3 1 =(ik) [ (k) (@] ~ 1 =(ik) In(q) - (k)
> Eo — | L4+ 5 E O —
+8\/§[l+mk/mi]1/2(2 (@GP | Tz =0 (@ aq cF
1 )
-3 5[ (0): I][ k;q 14m, (ED
Amain l (@) 1 [an@) - 3 \
%”(q,w):mrk,,(q,w)[ﬂ SO o=+ 3 Fos (| 0= L+ o AL m i (@)
1, ; @] 1 )
<[5 =@ eie 2 - =pie 0 A0 d
1 -
+3 E(@)-[ef(g >|][ kff) 14m, (E2
(k) _ Iknk * (ik) tmk(Q) 37‘E}\(q,w) ,_,(lk 5(K) k(q)
Gg (A 0w)= —l+m m Tkn(qvw)[F% (@O —24 a1 mm | (@:Cp(© —5 =
1
+3 =R @o kﬂ[C@(q):l]H, (E3)

wheree denotes convolution with respect to the closest index of the tefmsor
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